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RESUMO 
 

O artigo discute o problema do reconhecimento de alvos de radar realizado em imagens de radar 
complexas. Uma abordagem de rede neural artificial (ANN) com uma função de base radial (RBF) é proposta 
para identificar dispersadores de pontos localizados em uma imagem de radar. O conceito atualizado de blocos 
adaptativos simples como base para a montagem da rede permite o desenvolvimento de um esquema de 
extração de recursos baseado em ANN para processamento bidimensional de sinais. Foi demonstrado que 
ANN que implementa unidades de processamento neural de RBF pode ser usada para identificar alvos de 
radar descritos por um conjunto de dispersores individuais mesmo quando a distância relativa entre os 
dispersores é comparável ou menor que a largura efetiva de cada dispersor. A abordagem apresentada neste 
artigo foi a utilização da rede neural com a função de base radial especialmente sintetizada (RBF), usada para 
aproximar imagens de radar selecionadas transmitidas à sua entrada. Os resultados obtidos indicaram uma 
alta precisão na estimativa de centros individuais de dispersores na presença de ruído, o que não se limita ao 
caso estacionário, mas é considerado ciclostacionário. Também foi mostrado que os parâmetros que 
descrevem as coordenadas dos centros de dispersão podem ser extraídos com sucesso da ANN treinada após 
cerca de cem épocas passadas no processo de treinamento da ANN, que é realizado usando o método de 
descida com gradiente modificado. O principal resultado foi uma demonstração da possibilidade de usar redes 
neurais para análise automática de imagens de radar, que é parte integrante do conjunto de tarefas que 
formam o problema do reconhecimento de alvos. O algoritmo proposto implementa uma abordagem para 
identificar sistemas feitos usando procedimentos de treinamento em redes neurais. 
 
Palavras-chave: classificação do difusor, não estacionário, ciclo-estacionário, imagem de radar integrada, 
alvos de radar. 
 

ABSTRACT 
 
 The paper deals with the radar target discrimination problem performed on complex radar images. The 
approach based on radial basis function (RBF) artificial neural network (ANN) is proposed for the identification 
of point scatterers placed within a radar image. The renewed concept of simple adaptive units as the foundation 
for network assembling allows one to design an ANN-based feature extraction scheme for the two-dimensional 
signal processing. It was shown that ANN implementing RBF neural processing units could be applied for the 
identification of radar targets described by the set of separated scatterers, even in cases where the relative 
distance between the scatterers is comparable to or less than the effective width of each scatterer. The obtained 
results indicate a high accuracy estimation of separate scatterer centers in the presence of noise which is not 
limited to the stationary case but supposed to be cyclostationary. It was also shown that the parameters 
describing the coordinates of scattering centers could be successfully extracted from the trained ANN after 
about one hundred epochs spent on ANN training process, which is carried out by means of modified gradient 
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descent method. The main result is to demonstrate the possibility of using neural networks to automatically 
analyze radar images, which is an integral part of a set of tasks that form the target recognition problem. The 
proposed algorithm implements an approach of identification systems made using a neural network training 
procedures. 
 
Keywords: scatterer estimation, non-stationarity, cyclostationarity, complex radar image, radar targets. 

 
АННОТАЦИЯ 
 
 В статье рассматривается проблема распознавания радиолокационных целей, выполняемая на 
сложных радиолокационных изображениях. Подход, основанный на искусственной нейронной сети (ANN) 
с радиальной базисной функцией (RBF), предлагается для идентификации точечных рассеивателей, 
размещенных в радиолокационном изображении. Обновленная концепция простых адаптивных блоков 
как основы для сборки сети позволяет разработать схему извлечения признаков на основе ANN для 
двумерной обработки сигналов. Было показано, что ANN, реализующий нейронные блоки обработки 
RBF, может применяться для идентификации радиолокационных целей, описываемых набором 
отдельных рассеивателей, даже в тех случаях, когда относительное расстояние между рассеивателями 
сопоставимо или меньше эффективной ширины каждого рассеивателя. Подход, представленный в этой 
статье, состоит в использовании нейронной сети с особо синтезированной радиальной базисной 
функцией (RBF), которая используется для аппроксимации отобранных радиолокационных изображений, 
передаваемых на ее вход. Полученные результаты указывают на высокую точность оценки отдельных 
центров рассеивателей при наличии шума, который не ограничивается стационарным случаем, а 
предполагается, что он является циклостационарным. Также было показано, что параметры, 
описывающие координаты центров рассеяния, могут быть успешно извлечены из обученного ANN после 
примерно ста эпох, потраченных на процесс обучения ANN, который осуществляется с помощью 
модифицированного метода градиентного спуска. Основным результатом является демонстрация 
возможности использования нейронных сетей для автоматического анализа радиолокационных 
изображений, что является неотъемлемой частью набора задач, формирующих проблему 
распознавания целей. Предложенный алгоритм реализует подход идентификации систем, выполненных 
с использованием процедур обучения нейронной сети. 
 
Ключевые слова: оценка рассеивателя, нестационарность, циклостационарность, комплексное 
радиолокационное изображение, радиолокационные цели. 
 

 

1. INTRODUCTION 
 
 One of the important problems solved by 
modern smart radar systems is target 
identification. The possible approach to its 
solution is the machine-based analysis of radar 
images which can be performed by means of 
automated scattering analysis of the radar 
targets. The conceptual idea here is a 
decomposing the whole image under processing 
into point scatterers (Rihaczek and Hershkowitz, 
2000) which are rather simple elements whose 
appearance can have a clear physical 
explanation. It allows each scatterer to be 
reproduced as a part of mutually interconnected 
structure supported by the appropriate artificial 
neural network (ANN) (Efimov et al., 2014; Sandu 
et al., 2018). 

 The authors of the current paper found out 
(Efimov and Shevgunov, 2012b) that the existing 
methods of ANN design require some 
modifications in order to allow considering the 
neural networks as identification techniques 
rather than approximation models only. The 

essential benefit (Efimov and Shevgunov, 2012a) 
is that neural networks organized as identification 
models provide one with the powerful tool to 
perform effective parameter estimation 
procedure. The complex model can be 
decomposed into simpler blocks, which are 
mirrored in the appropriate units in the network 
graph (Dubrovin et al., 2014; Koltunov et al., 
2018). It means that not only can a successfully 
trained network be used for representing the 
revealed dependency, but it can also extract the 
values of internal parameters featuring its 
elements. Having been extracted, these values 
can be reversely mapped into the values related 
the original model parameters. In many 
widespread cases (Shevgunov et al., 2014), there 
would be a simple one-to-one reference between 
model parameters and some of network 
parameters. 

 A typical radar image to be processed is 
assumed to be obtained by a radar system 
performing azimuthal scanning with a high 
resolution in both distance and angle dimensions. 
The system operating in centimeter wavelength 
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range (Shevgunov and Efimov, 2019a) emits 
coherent pulses using the same antenna, working 
with time division, both for the transmission and 
the echo measuring receive. The scanning cycle 
is inevitably carried out in the presence of noise 
that can be modeled as stationary or non-
stationary, e.g. cyclostationary (Shevgunov, 
2019; Shevgunov et al., 2018a), process. The 
general concept of the scatterer identification 
approach is the estimation of parameters 
describing the set of scatterers involved in 
target’s representation such as the coordinate of 
their centers within the target as the most 
important information to characterize its 
geometrical form in any further processing. This 
information being acquired could be passed to 
the customized classification systems, which can 
be a data-driven system organized on machine-
learning principles that will form internal features 
working as anchors for the process of the 
automatic target identification. 

 The approach presented in this paper 
consists of using particularly synthesized radial 
basis function (RBF) neural network which is 
used for approximating sampled radar images 
given to its input. As soon as the approximation 
has finished successfully, the Cartesian 
coordinates of the scatterers are taken from the 
parameters of the neurons directly, which is 
proved by the intense numerical calculations 
whose results are presented in order to estimate 
the practical viability. It was shown in (Efimov and 
Shevgunov, 2014) that the ability of neural 
networks to operate on distorted, noisy and 
incomplete data sets alongside with the 
properties of RBF-neurons allows them to be 
applied in the scatter based target identification. 
The rest of this paper is organized as follows. 
Materials and Methods introduce the short 
outlook of the radar image model. The ANN-
based solution for the problem identification of 
multiple scatterers and the numerical simulation 
are described in Results and Discussion. The 
paper ends with conclusion depicting the further 
development of the processing based on ANN. 
 

2. MATERIALS AND METHODS 
 
 The basic model of a complex radar target 
(Henderson and Lewis, 1998) considers the radar 
target to be represented as a set of individual 
scatterers mounted on a stiff backbone. This 
model supposes that echo-response signals 
received during observation are to be determined 
as a superposition of the responses from each 
individual scatterer. Each of these individual 
responses possesses in the first consideration 

the form of the probe pulse emitted by the radar 
system. The physical model lying behind point 
scatterers is based on the assumption of the 
electromagnetic wave reflecting from the sharp 
edges of the man-made objects such as aircraft. 
Moreover, complex objects can be expressed as 
a unique superposition of scatterers as if they all 
were hold of a stiff frame. The model proposed 
has a few deliberately introduced simplifications. 
At first, non-linear distortions caused by signal 
reflection from a scatterer are thought to be 
compensated. At second, the changes in the 
positions of the scatterers are  considered 
insignificant whatever they have been caused, 
i.e., due to antenna moving or micro vibration. 
Finally, the total inaccuracy of the reflection 
process could be represented in the model by 
means of the additive noise component. 

 The proposed model of space-time radar 
echo response signal of a complex radar target is 
used to generate test input radar image. Since a 
high resolution in both distance (denoted by ρ) 
and angle (denoted by φ) for the observed radar 
target is assumed, the signal could be described 
with Equation 1 where          stands for 

complex-valued space-time radar signal echoed 

from p-th individual scatterer,          is the 

slice of the radar image across the distance (in 
fact, the form of this slice will correspond to the 

form of probe pulse),   
        is a term for 

squared antenna pattern, φp determines the main 
beam direction of the antenna. The term n(t) 
describes the additive noise which exhibits 
stationary or cyclostationary properties 
(Shevgunov et al., 2018b; Shevgunov and 
Efimov, 2019b) in the frequency band width 
enough for efficient functioning of the radar 
system. The schematic structure of the reflected 
signal is shown in Figure 1, where one can see 
red thin solid line as the three-dimensional plot of 
the wave in the time domain. The amplitude 
response depends on the scanning angle due to 
the particular radiation pattern of the antenna as 
well as on the back-scattering radiation pattern of 
the scatterer under investigation. Since the latter 
is assumed to be a great deal wider than the 
former, one can conclude that the response 
envelope will resemble the squared radiation 
pattern of the antenna, which is depicted via thin 
blue solid line. 

 The example of a complex radar image 
possessing three individual scatterers generated 
according to the introduced model for the 
complex radar target is shown in Figure 2 where 
the intensity varies – the lighter pixels are, the 
greater values of the function they represent. 
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Nevertheless, one can bear in mind that the 
image is visualized only by the absolute value of 
the original complex-valued 2D function (1) and 
any information about the phase is omitted there. 
As one can note in Figure 2, two of three pulses 
are close to each other. Therefore their 
responses overlapping was chosen intentionally 
to investigate whether the proposed ANN 
algorithm is able to distinct them successfully and 
to what extent. The third pulse has the greatest 
intensity and located far separately from the 
others. The probe pulse range waveform and 
antenna cross-range pattern are both assumed to 
have shape of the Gaussian curves. The typical 
value of the width of the antenna cross-range 
pattern is 1–5 degree while the effective pulse 
width is from 1–10 ns which determines the 
temporal and spatial resolution for further 
processing. 
 

3. RESULTS AND DISCUSSION: 
 
3.1. Neural Network Design 
 

 Scattering center coordinates are usually 
considered (Chen and Andrews, 1980) to be the 
most relevant parameter for the target 
identification. Thus in (Konovaluk et al., 2010; 
Chen and Ling, 2002 the prolific way to the 
identification using parametric methods for pole 
estimation in the frequency domain authors has 
been proposed. The coordinates of the poles on 
the virtual complex plane can be used then to 
evaluate geometrical centers of the scatters. 
Although this approach demonstrates high 
accuracy and has proven suboptimal nature, it 
suffers from high calculation cost and the 
requirement to perform accurate deconvolution of 
the radar image that is a naturally ill-conditional 
problem. Authors of the current work have 
proposed in (Efimov and Shevgunov, 2013) 
alternative solution based on ANN-framework 
since taking into consideration the fact that Radial 
Basis Function (RBF) neural networks perfectly 
correspond to the model (1). The proposed 
approach contains the following steps: 

 Step 1. Radar image sampling. 

 Step 2. The preparation of the training set 
is made of the radar image samples. 

 Step 3. RBF neural network synthesis. 

 Step 4. Training of the ANN using the set 
as the input data. 

 Step 5. Extraction RBF neurons 
parameters are performed to directly calculate 
coordinates of individual scatterers. 

 The structural scheme of RBF artificial 
neural network is shown in Figure 3. It consists of 
input signals x and y representing coordinates of 
a point belonging to the image to be processed 
and the output z representing the intensity at this 
point; the block marked with “+1” introduces bias 
input. The training set consists of samples whose 
x and y coordinates in the image are used as 
input data, and the signal intensity in that point is 
used as target output data. Hence, the problem 
can be now overlooked as the task of 
approximation of the target radar image with 
neural network. 

 The output signal generated by ANN is 
defined by the Equation 2 where xa is output 
network signal as the approximated radar image, 
ρ and φ stand for distance and antenna azimuthal 
angle correspondingly, P denotes the number of 
RBF neurons within the network, gp is the partial 
output signal taken as weighted output of p-th 
RBF neuron. The key point to highlight is that 
single RBF neuron is targeting a particular part of 
the image which best corresponds to the neurons 
output signal. Therefore, by selecting activation 
function of the neuron in accordance to the probe 
pulse form and antenna pattern, one can expect 
that each single RBF neuron will target one 
individual scatterer provided the training process 
is successful. The parameters of the neurons are 
available after the training and can be directly 
used for calculating the estimated parameters of 
the scatterers, which are the coordinates of their 
centers and the effective widths. 

 The structure RBF-neuron is of particular 
interest as it is a special type of neuron that not 
only uses a radial basis function as its activation 
function but also has another input combiner. 
Structural scheme of RBF neuron during feed-
forwarding is shown in Figure 4. In case of two-
dimensional input data, the neuron will have 3 
inputs: two are for coordinates x and y, and the 
extra one is for bias. The latter is marked with 
“+1”. The transformation function can be easily 
written from the scheme of the neuron in Figure 
4. Thus, the output signal is defined by the 
Equation 3 where x0 and y0 are the coordinates of 
the centers, kx and ky are scale multipliers. The 
argument inside the parenthesis of the term f in 
the transfer function above can be expressed in 
the form of the canonical equation of an ellipse or 
an ellipsoid if the dimension would be greater 
than two (Equation 4) where the following 
substitutions are applied (Equation 5). 

 In the case of Gaussian function taken for 
the activation function f, the output signal of one 
RBF-neuron will be equal to unity at the central 
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point and rapidly decreasing bell around. The 
individual knowledge of the adaptive elements 
behavior during their back-propagations opens 
the option for constructing a structural scheme of 
RBF neuron for back-propagation as it is seen in 
Figure 5. 
 
3.2. Numerical Simulation 
 

 Since any strict theoretical investigation 
on the estimation ability of ANN is always 
challenging, the numerical simulation is a helpful 
tool that is used in order to estimate practical 
accuracy of the proposed procedure. In this 
section, the numerical simulation is being 
conducted according to the five-step plan 
developed in the previous section. In the first 
step, the described above allocation of three 
individual scatterers was used to synthesize the 
radar image of a complex target. Basically, the 
radar image previously shown in Figure 2 
undergoes the sampling procedure, which is 
performed with the equal sampling steps in both 
dimensions. The discrete points, or samples, of 
the image are shown in Figure 6 by means of 
circles, which area is proportional to the intensity 
of the wave received at each point in the two-
dimensional plot. Since the value is superposition 
of all the scatteres involved in imaging their 
values are not decaying smoothly from the center 
down to the side of the bell curved shown in 
Figure 2. 

 The second step consists in getting all the 
samples together in order to form the training set 
as the set of ordered pairs {(x, y), z}, where x and 
y are spatially coordinated of each sample and z 
is the absolute value of the intensity of the 
reflected field at the point with the given position. 
In the third step, there is synthesized the ANN 
based on RBF architecture described in the 
previous section. Since the number of RBF-
neuron corresponds to the number of scatterers, 
this quantity is assumed to be known and equal 
to three. The activation function is chosen 
Gaussian in accordance with the form of probe 
pulse and antenna pattern possessed by model 
(1). The assumption of the Gaussian bell is not 
critical for the overall performance as it will be 
seen it further. 

 In the fourth step, the training set 
containing all the samples was used to train the 
RBF ANN network in the batch mode with the 
gradient descent method. The choice of the 
gradient descent method was made due to its 
relative simplicity even at the cost of slower 
convergence in comparison with the second-
order method. However, the latter are required 

computationally expensive procedures such as 
the matrix inversion, which is the gradient 
descent method is free of. For the purpose of 
controlled training process, the objective function 
was defined as the mean-squared error (MSE) 
function, which evaluates the difference between 
the source radar image and the solution 
evaluated at particular point by the synthesized 
RBF ANN. In addition, it evaluates the overall 
network performance while the training goes on 
and gets the clue about the epoch number when 
the training process can be stopped. The learning 
curve during the training is shown in Figure 7 as 
the value of the MSE curve plotted against the 
number of iteration or epoch. 

 The curve in Figure 7 can be split into two 
parts. In the first part, the error is large but 
decreases rapidly while, in the second part, the 
error is rather small but goes down slowly. One 
can see that the low level of MSE is achieved just 
after 100 training iterations; hence, the 
approximated radar image fits the source radar 
image accurately to process further. Besides, 
Figure 7 shows that the value of MSE is still 
decreasing at the end of the training process but 
notably slower than it took place at the beginning. 

 In the last step, the parameters of the 
scatterers are immediately extracted from the 
adaptive elements which the neurons consist of. 
Since the training process has finished 
successfully, the neurons contain the values 
related to the positions of the scatterers. The 
reconstructed scatterers are shown in Figure 8 
alongside with the true ones. The black solid lines 
depict the two-sigma level of each scatterer in the 
model whereas the dashed blue line illustrates 
the same for the scatterers estimated by the RBF 
ANN. It is clear that the centers of all scatterers 
are accurately estimated despite the fact that two 
of them were chosen in the model to be partially 
overlapping. However, the effective widths of the 
scatterers are not estimated so accurately. The 
width of two of the scatterers was estimated 
smaller as one can see in Figure 8 that the blue 
ellipses are inside the black ones. This 
phenomenon could be explained by their lesser 
influence on the overall MSE value and will be 
discussed in the next section in more details. 
 

4. CONCLUSIONS: 
 
 The series of Monte-Carlo simulation 
clearly indicates that RBF neural network can be 
successfully used for accurate estimating the 
centers of the individual scatterers with signal-to-
noise ratios down to 5 dB. However, the accuracy 



Periódico Tchê Química.  ISSN 2179-0302. (2019); vol.16 (n°33) 

Downloaded from www.periodico.tchequimica.com 
  578 

of the parameter describing the effective width of 
each scatterer is rougher. The explanation of this 
phenomenon consists in the difference in the 
influence caused by parameters of both types on 
the overall target function to be minimized during 
ANN training prosses. Thus, that function is 
significantly more sensitive to the change of the 
position of the scatter due to the fact that the 
greater values of the reconstructed image are 
primarily concentrated in the neighborhood of 
their center. Since the target function is quadratic, 
the greater values serve as additional weights. In 
contrast, the estimated values of scatterer width 
may vary in the wider range without any 
significant change in the target function that can 
be enough to adjust them even in the later 
training epochs. Nevertheless, the positions of 
the scatterers are considered to be more robust 
features as they are strongly related to the 
physical geometry of the target while the intensity 
of the reflection, which determines the width, will 
vary depending on many factors, the most 
important of which is the angle of the incident 
electromagnetic wave. 

 The paper reflects the current advances in 
the ANN based signal processing in regards to 
tasks related to the modern signal processing 
systems. The main result of the paper is 
demonstrating a possible way how neural 
networks can be used for automated radar image 
analysis which is the essential part of a set of 
tasks forming target recognition problem. The 
proposed algorithm carries out the system 
identification approach reached via neural 
network learning procedure. Thus. the radar 
image is firstly approximated by RBF networks 
where each RBF-neuron preserves the 
information about the point scatterer of the 
possible targets. The adaptive element concept 
chosen for ANN synthesis is extremely suitable 
for the second stage when the values of 
parameters are being extracted and further 
transformed into parameters of the multiscatterer 
model. The research, whose some results are 
presented in the paper, is bound to be continued 
as it is expected to be naturally developed into a 
universal scatter estimator that can be used for 
the automated scatterer identification and further 
reconstruction of the target shape carried out by 
means of another ANN belonging to the class of 
multilayer perceptrons. 
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Figure 1. The structure of space-time radar echo response signal of complex radar target 
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Figure 2. The example of a radar image with three scatterers 
 

 
 

Figure 3. RBF neural network 
 

 
 

Figure 4. The scheme of RBF neuron for feed-forwarding 
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Figure 5. Structural scheme of RBF neuron for backpropagation 
 

 
 

Figure 6. Sampled radar image 
 

 
 

Figure 7. Training process 
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Figure 8. Original and reconstructed scatterers 
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