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RESUMO 
 
 Os métodos existentes para estudar o estado termicamente deformado e tenso de uma haste de 
comprimento limitado feita de liga especial resistente ao calor não levam em conta a presença simultânea de 
processos térmicos, como transferência de calor, força axial, isolamento térmico, temperatura local, condições 
operacionais da haste e o fato, que em larga escala o coeficiente de expansão térmica do material da haste 
depende de temperatura. Para resolver esses problemas, os autores propõem um novo método numérico para 
estudar o estado termomecânico de uma haste de comprimento limitado feita da liga resistente ao calor ANV-
300. Esta haste é de comprimento limitado e rigidamente comprimida com duas extremidades. A superfície lateral 
das seções  3/0 Lx   e  LxL 3/2  o núcleo são isolados termicamente. No local 

 3/23/ LxL   da haste, é fornecida a temperatura local, que varia em coordenada por uma lei linear. Os 

estudos foram realizados em diferentes temperaturas ambientes. Os padrões da distribuição do campo de 
deslocamentos elásticos do componente elástico da deformação são construídos de acordo com a lei de Hooke, 
com os valores do componente elástico da tensão e levando em consideração a dependência do campo entre o 
coeficiente de expansão térmica e temperatura. Como resultado do estudo, verificou-se que uma mudança na 
temperatura da área transversal da extremidade esquerda do ambiente tem um efeito menor no estado de tensão 
térmica da haste considerada do que o efeito da mudança. 
 
Palavras-chave: minimização da energia potencial, método dos elementos finitos, isolamento térmico, 
temperatura, coeficiente de transferência de calor. 
 
ABSTRACT 
 
 Existing methods for studying the thermally stressed and deformed state of a rod of the limited length 
from a special heat-resistant alloy do not take into account the simultaneous presence of thermal processes, such 
as heat exchange, axial force, thermal insulation, local temperature, operating conditions of the rod and the full-
scale dependence of the coefficient of thermal expansion of the material of the rod on temperature. To solve such 
problems, the authors propose a new numerical method for studying the thermomechanical state of a rod of the 
limited length from the heat-resistant alloy ANV-300. This rod is of a limited length and rigidly clamped at both 
ends. The lateral surface of sections  3/0 Lx   and  LxL 3/2  of the rod is thermally insulated. At 

the site  3/23/ LxL  of the rod, the local temperature is given, which varies in coordinate by a linear 

law. The studies were carried out at different ambient temperatures. The laws of the distribution field of elastic 
displacements of the elastic component of deformation are constructed, respectively, according to Hooke's law, 
the values of the elastic component of stress, taking into account the field dependence between the coefficient of 
thermal expansion and temperature. As a result of studies, it was found that a change in the temperature of the 
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surrounding cross-sectional area of the left end of the medium has little effect on the thermally stressed state of 
the considered rod than the effect of the change. 
 
Keywords: minimization of potential energy, finite element method, thermal insulation, temperature, heat transfer 
coefficient. 
 
АННОТАЦИЯ 
 

Существующие методы исследования термически напряженного и деформированного состояния 
стержня ограниченной длины из специального жаропрочного сплава не учитывают одновременное 
наличие тепловых процессов, таких как теплообмен, осевая сила, теплоизоляция, локальная 
температура, условия эксплуатации стержня и натурная зависимость коэффициента теплового 
расширения материала стержня от температуры. В статье на основе минимизаций потенциальной энергии 
упругих деформаций с применением метода квадратичного конечного элемента с тремя узлами 
разработана математическая модель термонапряженно-деформированного состояния горизонтального 
стержня из жаропрочного сплава АНВ-300. Данный стержень ограниченной длины и жестко защемлен с 
двумя концами. Боковая поверхность участков  3/0 Lx   и  LxL 3/2  стержня 

теплоизолированная. На участке  3/23/ LxL   стержня дана локальная температура, 

меняющаяся по координате линейным законом. Через площадь поперечных сечений обоих концов 
данного стержня происходит тепловой обмен с окружающими их средами. Закономерности 
распределения поля упругих смещений упругой составляющей деформации строятся в соответствии с 
законом Гука, значениями упругой составляющей напряжений с учетом полевой зависимости между 
коэффициентом теплового расширения и температурой. В результате исследования было установлено, 
что изменение температуры окружающей площади поперечного сечения левого конца среды оказывает 
меньшее влияние на термически напряженное состояние рассматриваемого стержня, чем влияние 
изменения. 
 
Ключевые слова: минимизация потенциальной энергии, метод конечных элементов, теплоизоляция, 
температура, коэффициент теплообмена. 
 
 
1. INTRODUCTION 
 

The influence of ambient temperature on 
the thermally stressed state of a rod of this alloy in 
the presence of local temperature is carried out, 
and numerical results of the study are presented. 
Ambient temperature affects the rod through the 
cross-section of the left end. The studies were 
carried out at different ambient temperatures. The 
laws of the distribution field of elastic 
displacements of the elastic component of 
deformation are constructed, respectively, 
according to Hooke's law, the values of the elastic 
component of stress, taking into account the field 
dependence between the coefficient of thermal 
expansion and temperature. As a result of studies, 
it was found that a change in the temperature of 
the surrounding cross-sectional area of the left end 
of the medium has little effect on the thermally 
stressed state of the considered rod than the effect 
of the change. Thus, only by changing the value 
(and not), i.e., by changing the environmental 
properties of the surrounding cross-sectional area 
where heat transfer occurs, the thermally stressed 
state of the rod under investigation can be 
changed. 

Existing methods for studying the thermally 
stressed and deformed state of a rod of the limited 

length from a special heat-resistant alloy do not 
take into account the simultaneous presence of 
thermal processes, such as heat exchange, axial 
force, thermal insulation, local temperature, 
operating conditions of the rod and the full-scale 
dependence of the coefficient of thermal 
expansion of the material of the rod on 
temperature (Geng et al., 2018; Kudaykulov et al., 
2019; Litvishko et al., 2020; Shen et al., 2019). To 
solve such problems, the authors propose a new 
numerical method for studying the 
thermomechanical state of a rod of the limited 
length from the heat-resistant alloy ANV-300, 
which allows one to take into account the 
dependence between the coefficient of thermal 
expansion and the field of temperature 
distribution, operating conditions, and fixing. 
Chemical composition in % for grade ANV-300: C 
(max 0.1), Si (max 0.5), Mn (max 0.5), Ni (64.2-
70.1), S (max 0.01), P (max 0.015), Cr (14-17), W 
(7-10), Ti (1.4-2), Al (4.5-5.5), B (max 0.1), Ni – 
basis. It is used for the manufacture of ingots and 
cast rods intended for further remelting in the 
manufacture of shaped castings. 

The determining fundamental relations of 
thermoelasticity of weakly compressible materials 
are considered in (Mikhlin, 1974; Lee et al., 2017; 
Pandiyan et al., 2019; Rabinskiy and Tushavina, 
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2019; Dmitriev et al., 2011; Kolokoltsev et al., 
2020). Using a small parameter, an analytical 
solution to the problem of stretching a rod from a 
weakly compressible material under 
nonisothermal conditions is obtained. In (Nozdrev, 
1967; Fedotov et al., 2018; Starovoitov et al., 
2016; Qiu et al., 2017; Bartels, 2019; Krechetov et 
al., 2018; Civalek et al., 2020), the basic problems 
of thermodynamics and their application are 
described in sufficient detail. Zenkevich (1975) is 
devoted to the presentation of the finite element 
method, as one of the most effective methods for 
the numerical solution of engineering, physical 
and mathematical problems using computers. In 
(Timoshenko and Goodyear, 1975; Chen et al., 
2017; Park et al., 2019; Hou and Gao, 2020; 
Santos et al., 2020), a systematic presentation of 
the theory of elasticity was given, starting with the 
derivation of the main relations and ending with 
some solutions obtained in recent years. The 
plane problem, the problem of torsion and stress 
concentration, some spatial problems, variational 
principles, and methods for solving problems are 
considered in detail. 

Based on energy principles in combination 
with the use of a finite quadratic element with three 
nodes, a mathematical model, a computational 
algorithm, and a set of applied programs were 
developed in (Kudaykulov, 2009; Kudaykulov et 
al., 2009; Formalev et al., 2019; Formalev and 
Kolesnik, 2019; Myrzasheva and Shazhdekeyeva, 
2015; Myrzasheva et al., 2016; Akhmetov and 
Kudaykulov, 2017; Myrzasheva et al., 2018; 
Deepa and Rajendran, 2018; Kuznetsova and 
Rabinskiy, 2019). With the help of these 
developments, the problems of determining the 
thermomechanical and thermo-stress-strain states 
of a rod of constant cross-section, depending on 
the presence of local thermal insulation, 
temperature, heat transfer, and their operating 
condition, are numerically solved. The mechanical 
properties of heat-resistant steels and alloys at 
room and high temperatures, the influence of 
alloying elements on the structure, and methods of 
thermal and hot processing of alloys are 
considered in (Himushin, 1969). Also considered 
are heat-resistant alloys on iron, nickel, cobalt 
bases, and several refractory metals and their 
alloys. The most important methods and 
techniques of computational mathematics are 
described in (Demidovich and Maron, 1960; Yano 
et al., 2018; Leon and Chen (Roger), 2019; Sun et 
al., 2020). 

At present, in our republic and abroad, 
there are many scientific works devoted to the 
problem of determining the dependence of the 

thermally stressed-deformed state of bar elements 
of complex construction. Of these works, scientific 
studies by scientists of our country and 
neighboring countries can be noted: 
A.K. Kudaykulov (2009), B.B. Orazbaev 
(Orazbaev et al., 2017), M.M. Ermekov (2011), 
V.V. Afanasyeva (Afanasyeva and Lazerson, 
1995), V.N. Bakulin (1985), I.A. Birger (1992), G.S. 
Pisarenko (Pisarenko et al., 1973), A.I. Oleinikov 
(Korobeinikov et al., 2008), Yu.A. Fedorov (2001), 
F.F. Himushin (1969) and others, as well as 
foreign scientists, like O. Zenkevich (1975), F. 
Krieth (1973), V.F. Nozdrev (1967), L. Segerlind 
(1979) and others. 
 
2. MATERIALS AND METHODS 
 

Consider a rod of limited length  сmL,  
made of the heat-resistant alloy ANV-300. Both 
ends of the shaft are rigidly pinched. The cross-
sectional area of the rod is ),(, 2сmF  which is 
constant over its entire length. The thermal 
expansion coefficient of the rod material 

 KT /1),(  depends on the field temperature 
distribution. The thermal conductivity coefficient of 

the rod material is 







 Kcm

watt
Kxx, , the elastic modulus 

is 







2
,
cm

kG
E . The elastic modulus of the heat-

resistant alloy ANV-300 is temperature 
independent. Through the cross-sectional areas of 
the two pinched ends of the rod, heat exchange 
occurs with their surroundings. For the left end of 
the rod  0x , the heat transfer coefficient is 

denoted by 







 Kcm

watt
h

20,
, and the ambient 

temperature by )(,0 KT amb  . Similarly, for the right 

end  Lx   – 








 Kcm

watt
hL 2

,  and )(, KT Lamb  . Side 

surfaces, which are 
3

1  of the length of the rod, i.e., 

 )3/(0 Lx   and   LxL 3/2  we consider 
the core to be thermally insulated. In the area of 
the rod     3/23/ LxL  , the local 
temperature is given. It can be constant, varying 
along the local length of the rod with linear and 
quadratic laws. 

In the presence of heat sources due to 
thermal expansion and pinching, a stress-strain 
state appears in the inner sections of the rod. In 
this case, the components of the deformation and 
stress will be respectively, elastic  ,, xx   

temperature  TT  ,  and thermoelastic  .,  . 
If the field shows the temperature distribution and 
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thermal expansion coefficient along the length of 
the rod, then the expression of the function that 
characterizes the potential energy of elastic 
deformations of the considered rod has the 
following form (Equation 1), where V  is the 
volume of the rod; Equation 2 is component of 
elastic deformation; Equation 3 is the field of 
elastic displacement along the length of the rod; 
Equation 4 is elastic component of stress; 
Equation 5 is the law distribution of the coefficient 
of thermal expansion along the length of the rod; 
E  – module of elasticity of the core material; 
Equation 6 is law temperature distribution along 
the length of the rod. 

To construct a mathematical model of the 
thermal stress state of a heat-resistant alloy rod 
pinched by two ends, we discretize it by quadratic 
elements with three nodes. Given that the process 
under consideration is a steady-state, within each 
discrete element, the field distribution of 
temperature, coefficient of thermal expansion and 
elastic displacement is approximated by a full 
second-order polynomial passing through three 
nodal points ji,  and k (the length of the discrete 

element is , starting point i, mid-j, and finite-k and 
0iх , Equations (7)-(8)). Within each discrete 

field element, the distribution of these functions is 
expressed by the following Equations (9)-(11) 
(Mikhlin, 1974; Nozdrev, 1967; Zenkevich, 1975). 

Where kji ТТТ ,,  are the values of  xT  the nodal 

points i, j, k; kji uuu ,,  are the displacements of the 

sections along the coordinate, which are the 
coordinates of the nodes i, j, k, respectively; 

i , 

j ,
k  are values of   xT  at these nodal 

points, respectively, in the interval 

 ki xxxx  ;    xx ji  ,  and  xk  are the 

form functions for a quadratic element with three 
nodes, where (Equation 12). 

The properties of these forms functions will 
ensure the continuity of the desired functions 
during the transition from one element to the next. 
For this case, the expression of the functional 
characterizing the potential energy of elastic 
deformation, in the presence of heat sources for 
one discrete element, has the following form 
(Equation 13). Where 

iV  is the volume of the 

discrete quadratic element under consideration 
with three nodes. Then the potential energy of 
elastic deformation of the entire rod in the 
presence of heat sources expressed as Equation 
14. Where NDE is the number of discrete elements 
in the rod (Zenkevich, 1975; Timoshenko and 

Goodyear, 1975; Kudaykulov, 2009; Kudaykulov 
et al., 2009). 

Considering each integral in expression 
(Equation 13) separately and from (Equation 12), 
finding the expression for partial derivatives 

x
и

xx
jji










 

, , and substituting them in Equation 

13, we obtain an integrated expression of the 
function that characterizes the potential energy of 
elastic deformation of a discrete element in the 
presence of a temperature field (Equation 15). 
Further, minimizing the last functional concerning 
the nodal values of elastic displacement, we obtain 
a mathematical model of the thermally stressed 
state of a discrete element in the form of resolving 
systems of linear algebraic equations for the 
movement of element nodes (Equations 16-18). 

These equations are obtained for nodes of 
one discrete element. Since we discretize the 
considered rod with a set of quadratic elements 
with three nodes, the expression for the functional 
of the potential energy of elastic deformation 
should be written for each element, taking into 
account the temperature field (Zenkevich, 1975; 
Myrzasheva and Shazhdekeyeva, 2015). Then, 
the general expression of potential energy for the 
considered rod as a whole has the form (Equation 
14). The total number of nodes will be equal 

12 nn . In the general case, the mathematical 
system of the thermally stressed state of the 
considered rod pinched by two ends is the 
following system of linear algebraic 12 nn  
equation (19), where 𝑖 is presented in the Equation 
20. The displacement values of the two ends of the 
rod (due to rigid pinching) are equal to 

0121   nnuu . 

Solving system (Equation 19), the nodal 
values of elastic displacements are determined. 
The values of the elastic component of the 
deformation in the first half of the element are 
determined as Equation 21. Similarly, for the 
second half of the element, we have (Equation 22). 
Accordingly, according to Hooke's law, the values 
of the elastic component of stress are determined 
as follows (Equation 23). The values of the 
temperature component of the deformation and 
stress are determined as follows (Equations 24-
25). When I

x ; II
x ; I

T ; II
T ; I

x ; II
x ; I

T ; II
T  are known, 

values of thermoelastic strain and stress 
components are determined (Equations 26-27). 

Based on the developed mathematical 
model, we will carry out a numerical simulation of 
the thermally stressed state of the considered rod 
in dependence 

0ambT , for fixed values of all other 
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parameters. The core works in the presence of 
heat transfer, thermal insulation, and temperature. 
The temperature varies along the local length of 
the rod by a linear law, i.e., (Equation 28) at 
    3/23/ LxL  , where (Equation 29). We 

coordinate the coordinate axis Ox  from left to 
right (Figure 1). It is required to study the thermal 
stress state of a rod made of heat-resistant alloy 
ANV-300 clamped at both ends, depending on, for 
fixed values of all other parameters. Task. The 
values of the necessary parameters are as follows: 

)(400 KTТ Lambamb  . 40а ; )(30 сmL  ; 

xT 40 ; Equations (30)-(32) at )(2010 сmх  . 
We vary the value of the ambient temperature with 
the cross-sectional area of the left end  0x  of 
the rod: )(40);(30);(20);(100 KKKKTamb  . 

As mentioned above, in the presence of the 
given heat sources and partial thermal insulation, 
the rod tries to expand. However, due to the 
pinching of both ends, compressive forces R  
appear. In this regard, and due to the 
inhomogeneous temperature field, an 
inhomogeneous stress field arises in the inner 
sections of the rod. Components of the strain will 

be  ,, Tx , and stresses  ,, Tx
. It is 

required to determine the displacement field 
(Equation 33), elastic deformations 

x , 

temperature deformations 
T , thermoelastic 

deformations  , as well as elastic, temperature, 
and thermoelastic stresses 

Tx  ,  and  . 

To solve this problem, the considered rod 
is discretized 150n  by quadratic elements with 
three nodes. Then the length of each element will 
be сm2.0 . For each discrete element, an 
expression is written of the functional of the 
potential energy of elastic deformation, taking into 
account the presence of a temperature field. Next, 
summing them overall discrete elements, we find 
the expression of the corresponding functions for 
the considered rod as a whole. The total number 
of equations in the system will be .30112 п  
Since both ends of the rod are rigidly pinched, then 

03011  uu . In this regard, the number of 

equations in the system will be 299. By minimizing 
the potential energy of elastic deformation, taking 
into account the presence of a local field of 
temperature distribution and heat exchanges, we 
obtain (Equation 19), a system of resolving 
equations. 

Moreover, if the number of discrete 
elements in the rod is n  (where n  is a positive 

integer), then the number of nodes in the rod will 
be 12 n . Nevertheless, since both ends of the rod 
are rigidly clamped, the movement of the extreme 
nodes will be zero, i.e. 0121  nuu . Therefore, 

the minimization of the functional characterizing 
the potential energy of elastic deformations in the 
presence of a temperature field is minimized by 
nodal displacements (Equation 34). Solving the 
last system, we find the nodal values of 
displacement. Further, according to (Equations 

21-27), the value of the components  ,, Tx  

 ,, Tx
 in the given sections of the rod are 

determined. The task (Equation 35) is accepted 
(Myrzasheva et al., 2016; Akhmetov and 
Kudaykulov, 2017). 

 
3. RESULTS AND DISCUSSION: 
 

To obtain the results of the problem, first it 
was considered the case when )(100 KTamb  . In 

this case, the nodal values of the displacement are 
given in Table 1. The corresponding field 
distribution of displacement along the length of the 
considered rod is shown in Figure 2a). From this 
Table and the Figure, it can be seen that the 
sections of the rod that are on the site 

)(85.240 сmx   move against the direction of 

the axis Ox . Moreover, in this direction, the 
section with the coordinate )(2.13 сmx   moves 
most. The value of the displacement of this section 
is )(03066239.0132 сmu  . Cross-section of the 

rod, which are located on the site 
)(3085.24 сmLx  , move in the direction of 

the axis Ox . In this case, a section whose 
coordinate is )(4.27 сmx  moves more than other 
sections. The value of the displacement of this 
section is )(001973.0274 сmu  . Comparing, we 

find that 274132 uu  . 

The nodal values of the strain components 

of elastic ,x temperature T  and thermoelastic 

  are respectively given in Tables 2 and 3. The 
field distribution of these strain components along 
the length of the considered rod is shown in Figure 
3a). From these Tables and the Figure, it can be 
seen that the behavior of the elastic component of 
the deformation in the sections )(15.130 сmx   
and )(3035.27 сmLx   of the rod will be 

compressive. However, in the area 
)(35.2715.13 сmx   of the rod behaves tensile. 

The other two components of the deformation 
T  



 

Periódico Tchê Química.  ISSN 2179-0302. (2020); vol.17 (n°35) 
Downloaded from www.periodico.tchequimica.com 

  770 

and   along the entire length of the rod will have 
a compressive character. From Figure 3a), it is 
also seen that the field distribution of the 
components of elastic strains 

x  and 

thermoelastic strains   will be symmetric 
concerning a straight line whose equation is 

0052.00000033.0  x . 

Nodal values of the component stresses of 
elastic 

x , temperature 
T  , and thermoelastic   

are given in Tables 4 and 5. The corresponding 
field distribution of these component stresses is 
given in Figure 4a). From Tables 4 and 5, Figure 
4a), it is seen that the behavior of the elastic 
component of the stress 

x  in the sections 

)(15.130 сmx   and )(3035.27 сmLx   of 
the rod will have a compressive character, and in 
the remaining sections of the rod 

x  behaves 

tensile. The remaining two components of stress 

T , and   along the entire length of the rod will 

have a compressive character. Also, it can be 
seen from Figure 4 that the distribution field 

x  

and   along the length of the considered rod will 
be symmetric for the straight line, the equation of 
which has the following form 

544.10326304.9  x (Himushin, 1969; 
Myrzasheva et al., 2018). 

In the next step, increase the value 
0ambT , 

we accept )(200 KT amb  . The corresponding 

displacement distribution field is shown in Figure 
2b). From this graph, it can be seen that the cross-
sections of the rod located on the coordinate plane 
section )(85.240 сmx   move against the axis 

direction Ox . In this direction, the greatest 
displacement belongs to the coordinate section 

)(2.13 сmx  . The value is the displacement 

section of this section )(0305186.0132 сmu  . 

The sections of the rod located on the site 
)(3085.24 сmLx   move in the direction of the 

axis Ox . In this case, the greatest displacement 
belongs to the point with the coordinate 

 сmx 4.27 , and its largest value is 

 сmu 001996.0274  . This also shows that 

274132 uu  . 

The field distribution of the elastic ,x  

temperature 
T  and thermoelastic   deformation 

components along the length of the considered rod 
is shown in Figure 3b). From this figure, it is seen 
that the nature of the components of the 

deformation T  and   along the entire length of 

the rod will be compressive. In contrast, their 
behavior of elastic deformations 

x  in the sections 

)(15.130 сmx   and )(3035.27 сmLx   
the rod will be compressive, and in the remaining 
sections of the rod 

x  behaves in a tensile 

manner. It can also be seen from this figure that 
the field distribution of the strain components 
along the length of the considered rod will be 
symmetric to the straight line 

0052.00000033.0  x . 

The field of distribution of elastic 
x , 

temperature 
T  , and thermoelastic   

components of stress along the length of the 
considered rod is shown in Figure 4 b). In this 
case, the behavior of the components of the 
voltage 

T  and   along the entire length of the 

rod will be compressive. In contrast, the nature of 
the behavior of the elastic component of the stress 

x  will be of a different kind. The elastic 

component of the stress 
x  is compressive in the 

sections of the rod )(15.130 сmx   and 

)(3035.27 сmLx  , and in the remaining 
sections of the rod 

x  behaves in a tensile 

character. Figure 4b) also shows that this field, the 
distribution of the voltage components 

x , and   

along the length of the considered rod will be 
symmetrical to the straight line, the equation of 
which has the following form 

835.103371128.9  x . 

Now consider the case when 
)(300 KT amb  . The corresponding displacement 

field along the length of the considered rod is given 
in Figure 2c). From this graph, the displacement 
field shows that the sections of the rod located on 
the coordinate plane plot )(75.240 сmx   

move against the direction of the axis Ox , the 
largest displacement in this direction belongs to 
the point with the coordinate )(2.13 сmx  . The 
displacement value of this section is 

)(03037379.0132 сmu  . The sections of the rod 

located on the site )(3075.24 сmLx   move in 

the direction of the axis Ox , the largest 
movement in this direction belongs to a point with 
a coordinate ),(4.27 сmx   whose value is 

)(0020191194.0274 сmu  . It should also be noted 

that 274132 uu  . 

The corresponding field distribution of the 

elastic 
x , temperature T  , and thermoelastic   

deformation components along the length of the 
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considered rod is shown in Figure 3 c). From these 
materials, it can be seen that the behavior of the 
elastic component of deformation 

x  in the 

sections )(15.130 сmx   and 

)(3035.27 сmLx   the rod will have a 

compressive character, and in the remaining 
sections of the rod 

x  behaves tensile. In contrast 

to elastic deformations 
x , the behavior of the 

remaining components of the deformation 
T  and 

  along the entire length of the considered rod 
will have a compressive character. It can also be 
seen from this figure that the field distribution of 
the strain components along the length of the 
considered rod will be symmetric to the straight 
line 0052.00000033.0  x . 

The corresponding field of distribution of 
elastic, temperature 

Tx  , , and thermoelastic 

  components of stresses is given in Figure 4c). 
From these results, it is clear that the behavior of 
the two-component stresses 

T , and   along 

the entire length of the rod will be compressive. In 
contrast, their elastic component of stress 

x  in 

the sections )(15.130 сmx  and 

)(3035.27 сmLx   the rod behaves 
compressive, and in the rest of it, it has a tensile 
character. From Figure 4c), it can also be 
observed that the field of distribution of the 
component voltages 

x  and   are symmetric to 

a straight line, the equation of which has the 
following form 218.1034992.8  x . When the 

value )(400 KTamb   is varied, the corresponding 

field of the distribution of displacement, elastic, 
temperature, and thermoelastic components of the 
deformation 

Tx  ,  and , 
Tx  ,  and   stress 

along the length of the considered rod is given in 
Figures 2d), 3d), 4d) (Demidovich and Maron, 
1960; Kudaykulov et al., 2009). 

By analyzing the studies of this problem by 
values )(40);(30);(20);(100 KKKKTamb  , 

we can construct the following comparative Table 
6. These results show that in the case   xx 40  
at    3/23/ LxL  , the temperature changes 
with the surrounding cross-sectional area of the 

left end of the medium, i.e. 0ambT , minimal effect 

in comparison with 0h  the thermally stressed state 

of the investigated rod. Earlier, it was carried out a 
numerical study of the laws governing the 
influence of the heat transfer coefficient 

0h  on the 

thermally stressed state of a rod at a temperature 
that varies linearly, taking into account 

  xT  .   xT   – the law is the 
distribution of the coefficient of thermal expansion 
along the length of the rod, which expresses the 
full-scale dependence between the coefficient of 
thermal expansion and temperature. The rod is 
also made of heat-resistant alloy ANV-300 and 
pinched by two ends. 

The laws of the fields of distribution of 
elastic displacements, component deformations, 
and stresses according to the values of the heat 
transfer coefficient ℎ଴ ൌ 7. 5;  10; 15;  30 ሺ𝑤𝑎𝑡𝑡 /
 ሺс𝑚ଶ ⋅ °𝐾ሻሻ are constructed. Based on the results 
of these studies, the following comparative table 7 
is constructed. 
 
4. CONCLUSIONS: 

 

It was found that with increasing value 
0h , 

the amplitude of displacements increases against 
the direction of the axis Ox , and the amplitude of 
displacements in the direction of the axis Ox  
decreases. With increasing value 

0h , the 

maximum and average values of thermoelastic 
stress   decreases. 

Thus, it was established that only by 
changing the value 

0h , (and not 
0ambT ), i.e., by 

changing the environmental properties of the 
surrounding cross-sectional area where heat 
transfer occurs, the thermally stressed state of the 
rod under investigation can be changed. 
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Table 1. Nodal values of displacement at xT 40 ; )(100 KTamb   
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Table 2. Nodal values of x at xT 40 ; )(100 KT amb   

 

N
o

d
al

 
p

o
in

t

x  

N
o

d
al

 
p

o
in

t

x  

N
o

d
al

 
p

o
in

t

x  

N
o

d
al

 
p

o
in

t

x  

N
o

d
al

 
p

o
in

t

x  

1. 
-

0.003794377
6 

… … … … … … … …. 

2. 
-

0.003762381
0 

130. 
-

0.000064620
0 

200.
0.004647437

1 
273.

0.000035310
6 

298. 
-

0.001285220
6

3. 
-

0.003760240
3 

131. 
-

0.000056860
0 

201.
0.004647658

2 
274.

-
0.000075664

6 
299. 

-
0.001291026

4

… … 132. 
0.000060180

0 
202

0.004523364
8 

275.
-

0.000083024
4 

300. 
-

0.001377737
8

  … … … …. … …  
 
 
 

Table 3. Nodal values of И  at xT 40 ; )(100 KT amb   
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Table 4. Nodal values of 
x  at xT 40 ; )(100 KT amb   
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Table 5. Nodal values of 
И  at xT 40 ; )(100 KT amb   
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Table 6. Influence of ambient temperature on the stress-strain state of the test rod at different values 

0ambT  
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where 0u

 cm  

1 10 -0.03066 2.13x  0.001973 4.27x  -27700.1 -19675.5 85.24x  

2 20 -0.03051 2.13x  0.001996 4.27x  -27717.1 -19707.4 85.24x  

3 30 -0.03037 2.13x  0.002019 4.27x  -27502.9 -19739.5 75.24x  

4 40 -0.03023 2.13x  0.002042 4.27x  -27751.5 -19771.9 75.24x  
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Table 7. The effect of the heat transfer coefficient on the stress-strain state of the investigated rod 
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1 7.5 -0.02946 3.13x  0.00217 1.27x  -27842.5 -19942.6 65.24x
2 10 -0.03023 2.13x  0.00204 4.27x  -27751.5 -19771.9 75.24x
3 15 -0.03125 2.13x  0.001878 4.27x  -27630.1 -19544.1 95.24x
4 30 -0.0327 9.12x  0.001656 6.27x  -27459.6 -19224.6 25.25x

 

 

 
 

Figure 1. The calculation scheme of the problem 
 
 
 
 
 

 
 a) b) 

 
 c) d) 

 
Figure 2. Field distribution of elastic displacements along the length of the rod at 

)(40);(30);(20);(100 KKKKTamb   
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 a) b) 

 
 c) d) 

 
Figure 3. Field distribution of deformations along the length of the rod at 

)(40);(30);(20);(100 KKKKT amb   

 
 
 
 

 
 a) b) 

 
 c) d) 

 
Figure 4. Field stress distribution along the length of the rod at 

)(40);(30);(20);(100 KKKKTamb   
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