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RESUMO 
 
 As soluções exatas das equações de Schrodinger (SE) no sistema de coordenadas D-dimensional têm 
atraído a atenção de muitos pesquisadores teóricos nos ramos da física quântica e química quântica. Os 
autovalores de energia e a função de onda são as soluções da equação de Schrodinger que implicitamente 
representam o comportamento de um sistema mecânico quântico. O estudo teve como objetivo obter os 
autovalores, funções de onda e propriedades termodinâmicas da equação de Schrodinger 6-Dimensional sob 
duplo oscilador em forma de anel (DRSO) e potencial de Manning-Rosen. O método de separação variável foi 
aplicado para reduzir a única equação de Schrodinger 6-Dimensional dependente do potencial radial e angular 
não central em cinco equações de Schrodinger unidimensionais: uma equação de Schrodinger radial e cinco 
equações de Schrodinger angulares. Cada uma dessas equações de Schrodinger unidimensionais foi resolvida 
usando o método SUSY QM para obter um autovalor e uma função de onda da parte radial, cinco autovalores e 
cinco funções de onda angular da parte angular. Algumas propriedades termodinâmicas, tais como energia 
vibracional média U, calor específico vibracional C, energia livre vibracional F e entropia vibracional S, foram 
obtidas por meio das equações de energia radial. Os resultados mostraram que, exceto o 𝑛𝑙1, todo incremento 
do número quântico angular diminui os valores de energia. Incrementos de todos os parâmetros potenciais 
aumentam os valores de energia. O incremento do número quântico angular e do parâmetro de potenciais 
aumenta a amplitude e desloca as funções de onda para a esquerda. Entretanto, o incremento de 𝑛𝑙1, α, σ e ρ 
diminui a amplitude e muda as funções de onda para a direita. Além disso, a energia média vibracional U e a 
energia livre F aumentaram com o aumento do valor dos parâmetros dos potenciais, onde o parâmetro ω tem o 
efeito dominante do que os outros parâmetros. O calor vibracional específico C e a entropia S são afetados 
apenas pelo parâmetro ω, onde C e S diminuem com o aumento de ω. 

 
Palavras-chave: Sistema D-dimensional, potencial não central, potencial de forma de anel, supersimetria, 
mecânica quântica, quantidades termodinâmicas. 

 
ABSTRACT 
  

The exact solutions of the Schrodinger equations (SE) in the D-dimensional coordinate system have 
attracted the attention of many theoretical researchers in branches of quantum physics and quantum chemistry. 
The energy eigenvalues and the wave function are the solutions of the Schrodinger equation that implicitly 
represents the behavior of a quantum mechanical system. This study aimed to obtain the eigenvalues, wave 
functions, and thermodynamic properties of the 6-Dimensional Schrodinger equation under Double Ring-Shaped 
Oscillator (DRSO) and Manning-Rosen potential. The variable separation method was applied to reduce the one 
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6-Dimensional Schrodinger equation depending on radial and angular non-central potential into five one-
dimensional Schrodinger equations: one radial and five angular Schrodinger equations. Each of these one-
dimensional Schrodinger equations was solved using the SUSY QM method to obtain one eigenvalue and one 
wave function of the radial part, five eigenvalues, and five angular wave functions angular part. Some 
thermodynamic properties such, the vibrational mean energy 𝑈, vibrational specific heat 𝐶, vibrational free energy 
𝐹, and vibrational entropy 𝑆, were obtained using the radial energy equations. The results showed that except the 

𝑛𝑙1, all increment of angular quantum number decreases the energy values. Increments of all potential parameter 
increase the energy values. Increment of angular quantum number and potentials parameter increases the 
amplitude and shifts the wave functions to the left. However, the increment of 𝑛𝑙1, 𝛼, 𝜎, and 𝜌 decrease the 
amplitude and shift wavefunctions to the right. Moreover, the vibrational mean energy 𝑈 and free energy 𝐹 
increased as the increasing value of potentials parameters, where the ω parameter has the dominant effect than 
the other parameters. The vibrational specific heat 𝐶 and entropy 𝑆 affected only by the 𝜔 parameter, where 𝐶 

and 𝑆 decreased as the increase of 𝜔. 
 
Keywords: D-dimensional system, non-central potential, ring shape potential, supersymmetry quantum 
mechanics, thermodynamics quantities.  
 

ABSTRAK 
 
 Solusi eksak dari persamaan Schrodinger (SE) dalam sistem koordinat D-dimensi telah menarik banyak 
perhatian peneliti-peneliti fisika teori dalam cabang fisika dan kimia kuantum. Nilai eigen energi dan fungsi 
gelombang merupakan solusi dari persamaan Schrodinger, yang secara implisit merepresentasikan perilaku 
suatu sistem kuantum. Penelitian ini bertujuan untuk mendapatkan nilai eigen, fungsi gelombang, dan sifat 
termodinamika dari persamaan Schrodinger 6 Dimensi dengan potensial Double Ring-Shaped Oscillator (DRSO) 
dan Manning-Rosen. Metode pemisahan variabel diterapkan untuk mereduksi satu persamaan Schrodinger 6-
Dimensi yang bergantung pada potensial non-sentral fungsi radial dan sudut menjadi lima persamaan 
Schrodinger satu dimensi: satu persamaan Schrodinger bagian radial, dan lima persamaan Schrodinger bagian 
sudut. Masing-masing persamaan Schrodinger satu dimensi ini diselesaikan menggunakan metode SUSY QM 
untuk mendapatkan: satu nilai eigen dan satu fungsi gelombang dari bagian radial, lima nilai eigen dan lima fungsi 
gelombang sudut dari bagian sudut. Beberapa sifat termodinamika seperti vibrasi energi rata-rata 𝑈, vibrasi panas 
spesifik 𝐶, vibrasi energi bebas 𝐹, dan vibrasi entropi 𝑆 diperoleh dengan menggunakan persamaan energi radial. 

Hasil penelitian menunjukkan bahwa, selain 𝑛𝑙1, semua kenaikan bilangan kuantum sudut menurunkan nilai 
energi. Kenaikan semua parameter potensial meningkatkan nilai energi. Penambahan bilangan kuantum sudut 
dan parameter potensial meningkatkan amplitudo dan menggeser fungsi gelombang ke kiri. Namun, kenaikan 

𝑛𝑙1, 𝛼, 𝜎, dan 𝜌 menurunkan amplitudo dan menggeser fungsi gelombang ke kanan. Selain itu, nilai vibrasi mean 

energi 𝑈 dan energi bebas 𝐹 semakin meningkat seiring dengan meningkatnya nilai parameter potensial, dimana 

parameter ω memiliki pengaruh yang dominan dibandingkan dengan parameter lainnya. vibrasi panas jenis 𝐶 
dan entropi 𝑆 hanya dipengaruhi oleh parameter 𝜔, di mana 𝐶 dan 𝑆 menurun seiring bertambahnya 𝜔. 
 
Kata Kunci: Sistem D-Dimensi, potensial non sentral, potensial cincin ganda, mekanika kuantum super simetri, 
kuantitas termodinamika. 
  

 

1. INTRODUCTION: 
  

The solution of the Schrodinger equation 
(SE), Klein Gordon (KGE) and Dirac equations 
(DE) have been attracted the attention of many 
researchers in theoretical physics area (Durmus 
and Yasuk, 2007; Karayer, 2019; Yahya and 
Oyewumi, 2016) because these equations contain 
all information on the quantum mechanics system. 
The SE is used to analyze the quantities of 
nonrelativistic systems, while the KGE and DE are 
used in relativistic systems to analyze the spin-0 

and spin-
1

2
 particles, respectively (Arda and Sever, 

2009; Candemir, 2016; Zarrinkamar et al., 2010).  
The solution of SE, KGE, and DE with some 
potentials have a great rule in atomic and particles 
physics, plasma and solid-state (Ebomwonyi, et 

al., 2017; Zhang, 2000), scattering cross-section, 
tunneling, and decay rate (Antia et al., 2017). 
However, to get analytic solutions from these 
equations requires special methods and 
approaches. Various methods are still being 
developed in the interest of looking for 
nonrelativistic wave solutions. The Nikiforov-
Uvarov (NU) method has been used to solve the 
Dirac Equation, which is influenced by hyperbolic 
potential (Karayer, 2019),  Klein Gordon Equation 
(KGE) with multi-parameter q-deformed Wood 
Saxon potential (Lütfüoğlu, et al., 2018). 
Asymptotic Iteration Method (AIM) has been used 
to solve several problems. For instance, this 
method has been used to investigate Dirac 
Equation with Morse potential with tensor 
interaction (Alsadi, 2015), and Klein Gordon 
Equation with exponential scalar and vector 
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potential (Ikhdair and Falaye, 2013), relativistic 
and nonrelativistic wave equation under Poschl-
Teller potential and its thermodynamic properties 
(Taşkın, et al., 2008). Romanovski polynomial 
method has been used to investigate a quantum 
mechanical system of Dirac with the effect of Scarf 
plus new tensor coupling potential (Suparmi, et al., 
2014). The quantization rule approach has been 
used to solve the Schrodinger Equations problem 
with hyperbolic plus second Poschl-Teller 
potential (Dong and Gonzalez-Cisneros, 2008). 
Supersymmetry Quantum Mechanics (SUSY QM) 
method to analyze the Schrodinger equation with 
heavy-quarkonia potential (Abu-Shady and Ikot, 
2019) and Dirac equation under hyperbolic and 
Coulomb potential (Hassanabadi, et al., 2011). 

𝑉(𝑟, 𝜃) =
1

2
𝜇𝜔2𝑟2 +

ℏ2

2𝜇
(

𝛼

𝑟2sin2𝜃
+

𝜎

𝑟2cos2𝜃
) 

  (Eq. 1) 

The Double Ring-Shape Oscillator (DRSO) 
potential (1) is a type of ring-shaped potential with 
its mathematical interests and its physics and 
chemistry quantum applications. The ring-shaped 
type potential is one of non-central potential with a 
highly symmetrical system because of its 
invariance under reflection and axial symmetry  
(Carpio-Bernido and Chrisopher, 1989). This ring-
shape type potential is generally a combination of 
Coulomb, oscillator, or Hartman potential which 

involves (
1

𝑟2sin2𝜃
) on a ring-shaped type of single-

ring-shaped and (
1

sin2𝜃
+

1

cos2𝜃
) in the double ring-

shaped type (You, et al, 2018). This potential type 
in recent times has been an interesting topic of 
researchers in physics and quantum chemistry 
because of its importance when applied to 
describe the structure of benzene molecules in 
quantum chemistry and deformed nuclei in nuclear 
physics. Ring-shaped harmonic oscillators are 
also used to study the spin symmetry of an 
antinucleon embedded in nucleus and the linear 
and nonlinear optical effects of moving electrons 
in the non-central field (Chang-Yuan, et al, 2013; 
Fa-Lin, Lu and Chang-Yuan, 2010; Hassanabadi, 
et al, 2014; Ikot, A. N., et al, 2016; Sun, et al, 2014; 
Yasuk and Durmus, 2007; You et al., 2018).  

Improvement to solve the Schrodinger 
equation in a higher dimensional system still 
necessary to carry out because it is important 
under the field of quantum physics (André, et al., 
2019; Falaye and Oyewumi, 2011; Onate, et al., 
2018; Wang, et al., 2002). One of the motivations 
that attracted the attention of scientists to 
continually identify D-dimensional systems is the 
pretentious unified theory 20th century between 
the Relativity and Quantum theory. Another 

reason is to obtain clarity from one of the products 
from string and supergravity theory,  the Klauza-
Klein theory if its additional dimensions are the 
spatial dimension (Dong, 2011). 

Therefore, to obtain more advancement 
information on the D-dimensional quantum 
mechanical system, it should not be restricted to 
four or five-dimensional spaces. The investigation 
needs to be made for higher dimensional spaces 
and various potential systems to get more general 
solutions. So, this study tried to analyze the 6-
dimensional quantum mechanical system, both for 
radial and each of its angular parts. 

𝑉(𝜃) =
ℏ2

2𝜇

𝜐(𝜐 + 1)

sin 𝜃
−

ℏ2

2𝜇

2𝜌

𝜐
cot 𝜃 

   (Eq. 2) 

 DRSO (1) plus Manning Rosen potential 
(2) could be extended into a 6-Dimensional 
separable non-central potential written as follows 

𝑉(𝑟, 𝜃1, 𝜃2, 𝜃3𝜃4, 𝜃5)
= 𝑉(𝑟)

+
1

𝑟2 {
𝑉1(𝜃1)

sin2𝜃2sin2𝜃3sin2𝜃4sin2𝜃5

+
𝑉2(𝜃2)

sin2𝜃3sin2𝜃4sin2𝜃5

+
𝑉3(𝜃3)

sin2𝜃4sin2𝜃5
+

𝑉4(𝜃4)

sin2𝜃5
+ 𝑉5(𝜃5)} 

   (Eq. 3) 

with 

𝑉(𝑟) =
1

2
𝜇𝜔2𝑟2 

   (Eq. 4) 

𝑉1(𝜃1) =
ℏ2

2𝜇
(

𝛼

sin2𝜃1
+

𝜎

cos2𝜃1
) 

   (Eq. 5) 

𝑉2(𝜃2) =
ℏ2

2𝜇
(

𝜐2(𝜐2 + 1)

sin2𝜃2
− 2𝜌2cot𝜃2) 

   (Eq. 6) 

𝑉3(𝜃3) =
ℏ2

2𝜇
(

𝜐3(𝜐3 + 1)

sin2𝜃2
− 2𝜌3 cot 𝜃3) 

   (Eq. 7) 

𝑉4(𝜃4) =
ℏ2

2𝜇
(

𝜐4(𝜐4 + 1)

sin2𝜃4
− 2𝜌4 cot 𝜃4) 

   (Eq. 8) 

𝑉5(𝜃5) =
ℏ2

2𝜇
(

𝜐5(𝜐5 + 1)

sin2𝜃5
− 2𝜌5 cot 𝜃5) 

   (Eq. 9) 

Where equation (3) is a special form of 
equation (25) for the 6-dimensional system. With 
0 ≤ 𝜃1 ≤ 2𝜋, and 0 ≤ 𝜃2, 𝜃3, 𝜃4, 𝜃5 ≤ 𝜋. ℏ, 𝜇, and 𝜔 
are Planck constant, mass, and frequency of a 
particle. 𝛼, 𝜎, 𝜐𝑖, and 𝜌𝑖 are the potential 



Periódico Tchê Química.  ISSN 2179-0302. (2020); vol.17 (n°36) 
Downloaded from www.periodico.tchequimica.com 

  568 

parameters, respectively.  

The thermodynamics properties for 
quantum mechanical systems are an interesting 
problem to consider because of their interactions 
with the energy spectrum that contains the 
physical properties of the quantum system its self. 
There are many studies of thermodynamic 
properties. Some of them are the 
thermodynamical properties for systems with 
double ring-shaped quantum dot type potential 
(Khordad and Sedehi, 2018), thermodynamical 
properties from Klein Gordon equation with 
DFPEP potential D-dimensional spaces (A N Ikot 
et al., 2016). For example, thermodynamical 
properties from Schrodinger Equation and Klein 
Gordon equation with Poshcl-Teller potential 
(Yahya and Oyewumi, 2016), thermodynamical 
properties of Schrodinger equation with an 
anharmonic oscillator in cosmic string framework 
(Sobhani, et al., 2018), thermodynamical 
properties of diatomic molecules using general 
molecular potential (A N Ikot et al., 2018). 

The vibrational mean energy 𝑈, the 
vibrational specific heat 𝐶, the vibrational free 

energy 𝐹, and the vibrational entropy 𝑆 can be 
solved using some following order. Starting by 
solving the Shrodinger equation in the D-
dimensional system to get the energy level 
equations and eigenfunctions for the angular and 
radial parts, respectively. The energy equation is 
then employed to determine the partition function, 
which is the principal element for defining the 
thermodynamics properties. 

The research of thermodynamics 
properties in a D-dimensional system with ring 
shape type potentials is still an interesting topic in 
the quantum mechanics. Generally, ring-shaped 
type potential in D-dimensional space is analyzed 
without being extended to study thermodynamic 
properties. The complexity of the theory and 
application in quantum mechanical systems 
analyzed the thermodynamics properties of the 
Schrodinger equation in 6-dimensional spaces 
with DRSO plus Manning Rosen potential using 
the SUSY QM technique. 

This study aimed to find the nonrelativistic 
energy spectra equation, radial wave function and 
angular wave functions, and also the 
corresponding thermodynamics properties such 
us the vibrational mean energy, vibrational free 
energy, vibrational specific heat and vibrational 
entropy of six-dimensional Schrodinger equation 
for Double Ring-Shape Oscillator (DRSO) and 
Manning Rosen potential.  

  

2.  MATERIALS AND METHODS: 
  
2.1. Supersymmetry Quantum Mechanic (SUSY QM) 
Method  
 

One of the powerful techniques to solve 
Schrodinger-like equations is Supersymmetry 
Quantum Mechanics (SUSY QM) method. The 
method proposed by Witten is principally 
developed based on the existence of fermionic 
operators which are commute with the 
Hamiltonian (Witten, 1981) Concerning the 
supersymmetry system in general, the 
Hamiltonian 𝐻 is composed of the square of 
supersymmetry charges and can be expressed as 
a multiplication between a pair of supersymmetry 
operators as 

𝐻∓(𝑥) = 𝐴±𝐴∓ 
   (Eq. 10) 
with 

𝐴± = ∓
ℏ

√2𝜇

𝑑

𝑑𝑥
+ 𝑊(𝑥) 

   (Eq. 11) 

 

where 𝐴+ and 𝐴− are rising and lowering 
operators, and a pair of SUSY QM partner 
potentials 𝑉∓(𝑥) gave as  

𝑉∓(𝑥) = 𝑊2(𝑥) ∓
ℏ

√2𝜇

𝑑𝑊(𝑥)

𝑑𝑥
 

   (Eq. 12) 

 

 The general Hamiltonian can be factored 
into 

𝐻 = 𝐻− + 𝐸0 = −
ℏ2

2𝜇

𝑑2

𝑑𝑥2
+ 𝑉−(𝑥; 𝑎0) + 𝐸0 

   (Eq. 13) 

 

Therefore, using equations (12) and (13) it 
has got the equation 14 

 

𝑉(𝑥) = 𝑉−(𝑥; 𝑎0) + 𝐸0

= 𝑊2(𝑥) −
ℏ

√2𝜇

𝑑𝑊(𝑥)

𝑑𝑥
+ 𝐸0 

   (Eq. 14) 

 

where 𝑉(𝑥) is an effective potential and 𝐸0 is the 

groundstate energy. Superpotential 𝑊(𝑥) is 
hypothetically determined by considering the 
effective potential equation form of the related 
system expressed in equation (14). 
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 The supersymmetry solely presents the 
relationship between the eigenvalues and 
eigenfunctions between two Hamiltonian partners 
but does not provide the actual spectrum 
Consequently, one has to consider shape 
invariance condition. The potential is said to shape 
invariance if its supersymmetry partner potential 
has similar shapes but not for the parameters. 

More specifically, if 𝑉−(𝑥; 𝑎𝑗) is a potential with its 

partner superpotential 𝑉+(𝑥; 𝑎𝑗) have to satisfy the 

equation   

 

𝑉+(𝑥; 𝑎𝑗) = 𝑉−(𝑥; 𝑎𝑗+1) + 𝑅(𝑎𝑗+1) 

   (Eq. 15) 

 

with 

𝑉+(𝑥; 𝑎𝑗) = 𝑊2(𝑥; 𝑎𝑗) +
ℏ

√2𝑚

𝑑𝑊(𝑥; 𝑎𝑗)

𝑑𝑥
 ; 

𝑉−(𝑥; 𝑎𝑗+1) = 𝑊2(𝑥; 𝑎𝑗+1) −
ℏ

√2𝑚

𝑑𝑊(𝑥; 𝑎𝑗+1)

𝑑𝑥
 

 (Eq. 16) 

 

where 𝑗 = 0,1,2, …  and 𝑎 is a parameter of the 

potential 𝑉− when its ground state energy is zero, 
𝑎𝑗 = 𝑓𝑗(𝑎0) for 𝑓𝑗 is a function that is applied 𝑗 

times, 𝑅(𝑎𝑗) is an independent Constanta towards 

𝑥. Furthermore, the Hamiltonian eigenvalue can 
be written as (Dutt, et al., 1988; Khare and 
Bhaduri, 1993). 
 

𝐸𝑛
(−) = ∑

𝑘=1

𝑛

𝑅(𝑎𝑘) 

   (Eq. 17) 
 
Thus, from equation (13) and (17), it is possible to 
get the energy spectrum of the system 

 

𝐸𝑛 = 𝐸𝑛
(−) + 𝐸0 

   (Eq. 18) 
 

Ground state wave function of 𝐻− which 
the energy is zero could be obtained by 

 

𝐴−𝜓0
(−) = 0 

   (Eq. 19) 

 The excited wave function 

𝜓1
(−)(𝑥; 𝑎0), ⋯ , 𝜓𝑛

(−)(𝑥; 𝑎0) from 𝐻− can be 

determined by applying raising operator on the 
lower wave function  

 

𝜓𝑛
(−)(𝑥; 𝑎0)

≈ 𝐴+(𝑥; 𝑎0)𝐴+(𝑥; 𝑎1) ⋯ 𝐴+(𝑥; 𝑎𝑛−1), 𝜓0
(−)(𝑥; 𝑎𝑛) 

   (Eq. 20) 

 
2.2. Schrodinger Equation in 6-Dimensional 
Coordinates  

The time-independent Schrodinger 
equation with potential in D-dimensional is given 
by (Hassanabadi, et al., 2011; Wang, et al., 2002) 

 

(𝛻𝐷
2 −

2𝜇

ℏ2
𝑉) 𝜓𝑙1,…,𝑙𝐷−1

(𝑙𝐷−1=𝑙)
(𝑋̂) = −

2𝜇

ℏ2
𝐸𝜓𝑙1,…,𝑙𝐷−1

(𝑙𝐷−1=𝑙)
(𝑋̂) 

   (Eq. 21) 

 

with 𝐸 is the energy of the particle. 𝜓𝑙1,…,𝑙𝐷−1

(𝑙𝐷−1=𝑙)
(𝑋̂) is 

the Laplace operator for D-dimensional space, 𝛻𝐷
2  

and D-dimensional position vector are given as 

 

              𝛻𝐷
2 =

1

ℎ
∑

𝑗=0

𝐷−1 𝑑

𝑑𝜃𝑗
(

ℎ

ℎ𝑗
2

𝜕

𝜕𝜃𝑗
)                        (Eq. 22) 

𝜃0 = 𝑟; ℎ = ∏
𝑗=0

𝐷−1

ℎ𝑗; ℎ𝑗
2 = ∑

𝑖=0

𝐷

(
𝜕𝑋𝑖

𝜕𝜃𝑗
)

2

 

 (Eq. 23) 

 

 The relevance between D-dimensional 

position vector 𝑋̂ = (𝑟, 𝜃𝑖), and hyperspherical 
Cartesian coordinates 𝑥1 can be written as follows: 

 

𝑥1 = 𝑟 cos 𝜃1 sin 𝜃2 , ⋯ , sin 𝜃𝐷−1 

𝑥2 = 𝑟 sin 𝜃1 sin 𝜃2 , ⋯ , sin 𝜃𝐷−1 
𝑥𝑏 = 𝑟 cos 𝜃𝑏−1 sin 𝜃𝑏 , ⋯ , sin 𝜃𝐷−1 

⋮ 
𝑥𝐷−1 = 𝑟 cos 𝜃𝐷−2 sin 𝜃𝐷−1 

𝑥𝐷 = 𝑟 cos 𝜃𝐷−1 
 (Eq. 24) 

 

where 𝑟 ∈ [0, ∞], 𝜃1 ∈ [0,2𝜋], 𝜃𝑏 ∈ [0, 𝜋], 𝐷 =
2,3, ⋯, and 𝑏 = 3,4, ⋯ , (𝐷 − 1) (Dong, 2011). 

Specifically, for the case when 𝐷 = 3, the 
hyperspherical coordinate system reduced into 
spherical coordinates (𝑟, 𝜃, 𝜑). 

The separable D dimensional non-central 
potential hypothetically proposed as 
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𝑉(𝑟, 𝜃1, 𝜃2, … , 𝜃𝐷−1)

= 𝑉(𝑟) +
1

𝑟2
∑

𝑉𝑗(𝜃𝑗)

sin2𝜃𝑗+1 … sin2𝜃𝐷−1

𝐷−1

𝑗=1

+ ⋯ +
𝑉𝐷−2(𝜃𝐷−2)

sin2𝜃𝐷−1
+ 𝑉𝐷−1(𝜃𝐷−1) 

(Eq. 25) 

 

For 6 dimensional quantum system with a 
separable 6 dimensional non central potential it 
has got the D dimensional coordinate system 
obtained from equation (24) as 

 

𝑥1 = 𝑟 cos 𝜃1 sin 𝜃2 sin 𝜃3 sin 𝜃4 sin 𝜃5 

𝑥2 = 𝑟 sin 𝜃1 sin 𝜃2 sin 𝜃3 sin 𝜃4 sin 𝜃5 
𝑥3 = 𝑟 cos 𝜃2 sin 𝜃3 sin 𝜃4 sin 𝜃5 

𝑥4 = 𝑟 cos 𝜃3 sin 𝜃4 sin 𝜃5 

𝑥5 = 𝑟 cos 𝜃4 sin 𝜃5 
                              𝑥6 = 𝑟 cos 𝜃5      (Eq  26) 
 
with the coordinate scale obtained from equation 
(23) as 

ℎ1 = 𝑟 sin 𝜃2 sin 𝜃3 sin 𝜃4 sin 𝜃5 

ℎ2 = 𝑟 sin 𝜃3 sin 𝜃4 sin 𝜃5 
ℎ3 = 𝑟 sin 𝜃4 sin 𝜃5 

ℎ4 = 𝑟 sin 𝜃5 

ℎ5 = 𝑟 
                                   ℎ0 = ℎ𝑟 = 1 
 (Eq. 27) 

Apply equations (26) and (27) on equation 
(22), it has got the Laplacian operator for the 6-
Dimensional system as 

 

𝛻6
2

=
1

𝑟5

𝜕

𝜕𝑟
(𝑟5

𝜕

𝜕𝑟
)

+
1

𝑟2 {
1

sin2𝜃2sin2𝜃3sin2𝜃4sin2𝜃5
(

𝜕2

𝜕𝜃1
2)

+
1

sin2𝜃3sin2𝜃4sin2𝜃5
[

1

sin𝜃2

𝜕

𝜕𝜃2
(sin𝜃2

𝜕

𝜕𝜃2
)]}

+
1

𝑟2 {
1

sin2𝜃4sin2𝜃5
[

1

sin2𝜃3

𝜕

𝜕𝜃3
(sin2𝜃3

𝜕

𝜕𝜃3
)]

+
1

sin2𝜃5
[

1

sin3𝜃4

𝜕

𝜕𝜃4
(𝑠𝑖𝑛3𝜃4

𝜕

𝜕𝜃4
)]

+
1

sin4𝜃5

𝜕

𝜕𝜃5
(sin4𝜃5

𝜕

𝜕𝜃5
)} 

 (Eq. 28) 

 

 The potential form that allows the variable 
separation in 6-dimensional system obtained from 
equation (25) have been given in equations (3-9). 

 By setting up 

𝜓𝑙1,…,𝑙𝐷−1

(𝑙𝐷−1=𝑙)
(𝑋̂) = 𝑅(𝑟)𝑃𝑖(𝜃𝑖)  ;   𝑖 = 1,2,3,4,5 

   (Eq. 29) 

 

then it is possible to make the separation of 
variables by applying equations (27) - (29) into 
(21). Using simple mathematical procedures, it 
can be obtained wave equations of the 6-
dimensional system for radial 𝑟 and angular 𝜃𝑖 
functions, respectively. 

 

𝑟2
1

𝑟5

𝑑

𝑑𝑟
(𝑟5

𝑑𝑅(𝑟)

𝑑𝑟
) +

2𝜇

ℏ2
(𝐸𝑟2 − 𝑉1(𝑟)𝑟2)𝑅(𝑟)

− 𝜆5𝑅(𝑟) = 0 
   (Eq. 30) 

{
𝑑2

𝑑𝜃1
2 −

2𝜇

ℏ2
𝑉1(𝜃1) + 𝜆1} 𝑃1 = 0 

   (Eq. 31) 
1

sin𝜃2

𝑑

𝑑𝜃2
(sin𝜃2

𝑑𝑃2

𝑑𝜃2
)

− {
2𝜇

ℏ2
𝑉2(𝜃2) +

𝜆1

sin2𝜃2
− 𝜆2} 𝑃2 = 0 

   (Eq. 32) 
1

sin2𝜃3

𝑑

𝑑𝜃3
(sin2𝜃3

𝑑𝑃3

𝑑𝜃3
)

− {
2𝜇

ℏ2
𝑉3(𝜃3) +

𝜆2

sin2𝜃3
− 𝜆3} 𝑃3 = 0 

   (Eq. 33) 
1

sin3𝜃4

𝑑

𝑑𝜃4
(sin3𝜃4

𝑑𝑃4

𝑑𝜃4
)

− {
2𝜇

ℏ2
𝑉4(𝜃4) +

𝜆3

sin2𝜃4
− 𝜆4} 𝑃4 = 0 

   (Eq. 34) 
1

sin4𝜃5

𝑑

𝑑𝜃5
(sin4𝜃5

𝑑𝑃5

𝑑𝜃5
)

− {
2𝜇

ℏ2
𝑉5(𝜃5) +

𝜆4

sin2𝜃5
− 𝜆5} 𝑃5 = 0 

   (Eq. 35) 

with  𝜆1 - 𝜆5 are the variable separation constants. 
 

Each of these equations (30), (32) – (35) 
has both first and second derivative forms, so we 
need to reduce these equations to the form of a 
Schrodinger-like equation with the second 
derivative form only. Therefore, we set 𝑅(𝑟) =

𝑟
−(

𝐷−1

2
)
𝜒(𝑟) and 𝑃𝑖 = sin

−(
𝑖−1

2
)

𝜃𝑖 𝑄(𝜃𝑖), i = 2-5 then 
using simple mathematic operations, it can be 
obtained 
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{
𝑑2

𝑑𝑟2
−

2𝜇

ℏ2
𝑉𝑟(𝑟) −

𝜆5 +
15
4

𝑟2
+

2𝜇

ℏ2
𝐸} 𝜒(𝑟) = 0 

   (Eq. 36) 

{
𝑑2

𝑑𝜃1
2 −

2𝜇

ℏ2
𝑉1(𝜃1) + 𝜆1} 𝑄1(𝜃1) = 0 

   (Eq. 37) 

{
𝑑2

𝑑𝜃2
2 −

2𝜇

ℏ2
𝑉2(𝜃2) −

𝜆1 −
1
4

sin2𝜃2
+ (

1

4
+ 𝜆2)} 𝑄2(𝜃2)

= 0 
   (Eq. 38) 

{
𝑑2

𝑑𝜃3
2 −

2𝜇

ℏ2
𝑉3(𝜃3) −

𝜆2

sin2𝜃3
+ (1 + 𝜆3)} 𝑄3(𝜃3)

= 0 
   (Eq. 39) 

{
𝑑2

𝑑𝜃4
2 −

2𝜇

ℏ2
𝑉4(𝜃4) −

𝜆3 +
3
4

sin2𝜃4
+ (

9

4
+ 𝜆4)} 𝑄4(𝜃4)

= 0 
   (Eq. 40) 

{
𝑑2

𝑑𝜃5
2 −

2𝜇

ℏ2
𝑉5(𝜃5) −

𝜆4 + 2

sin2𝜃5
+ (4 + 𝜆5)} 𝑄5(𝜃5)

= 0 
   (Eq. 41) 

the radial Schrodinger-like wave equation (36) 
and angular Schrodinger-like wave equations (37) 
– (41) are solvable using the SUSY QM method. 

 

3. RESULTS AND DISCUSSION: 
  
3.1. The solution of the Schrodinger Equation in 6-
Dimensional System 
 
3.1.1  Solution of angular 𝜽𝟏  

 
 Substitute the angular 𝜃1 potential in 
equations (3) and (5) into equation (37) 

{−
ℏ2

2𝜇

𝑑2

𝑑𝜃1
2 +

ℏ2

2𝜇
(

𝛼

sin2𝜃1
+

𝜎

cos2𝜃1
)} 𝑄1(𝜃1)

=
ℏ2

2𝜇
𝜆1𝑄1(𝜃1) 

  (Eq. 42) 

then it has got its effective potential as, 

𝑉eff(𝜃1) =
ℏ2

2𝜇
(

𝛼′(𝛼′ − 1)

sin2𝜃1
+

𝜎′(𝜎′ − 1)

cos2𝜃1
) 

  (Eq. 43) 

where 𝛼′ = √𝛼 +
1

4
+

1

2
, 𝜎′ = √𝜎 +

1

4
+

1

2
 and 𝐸𝜃1

=

ℏ2

2𝜇
𝜆1. 

 Using the following hypothetical 
superpotential for the effective potential in 
equation (43), 

𝑊(𝜃1) =
ℏ

√2𝜇
(𝑀cot𝜃1 + 𝑁tan𝜃1) 

   (Eq. 44) 

then inserting equations (43) and (44) into 
equation (14) it is possible to obtain 

ℏ2

2𝜇
(

𝛼′(𝛼′ − 1)

sin2𝜃1
+

𝜎′(𝜎′ − 1)

cos2𝜃1
) − 𝐸0

=
ℏ2

2𝜇
(

𝑀2 + 𝑀

sin2𝜃1
+

𝑁2 − 𝑁

cos2𝜃1
)

−
ℏ2

2𝜇
(𝑀 − 𝑁)2 

   (Eq. 45) 

It has got several parameter relations as follows 

𝑀(𝑀 + 1) = 𝛼′(𝛼′ − 1) → 𝑀 = −𝛼′ 
   (Eq. 46) 

𝑁(𝑁 − 1) = 𝜎′(𝜎′ − 1) → 𝑁 = 𝜎′ 
   (Eq. 47) 

𝐸0(𝜃1) = (𝑀 − 𝑁)2 = (𝛼′ + 𝜎′)2 
   (Eq. 48) 

 The superpartner potential for angular 𝜃1 is 
obtained by substituting equation (44) and (46) - 
(48) into (12) 

𝑉−(𝜃1; 𝑎0) =
ℏ2

2𝜇
(

𝛼′(𝛼′ − 1)

sin2𝜃1
+

𝜎′(𝜎′ − 1)

cos2𝜃1
)

−
ℏ2

2𝜇
(𝛼′ + 𝜎′)2 

   (Eq. 49) 

𝑉+(𝜃1; 𝑎0) =
ℏ2

2𝜇
(

𝛼′(𝛼′ + 1)

sin2𝜃1
+

𝜎′(𝜎′ + 1)

cos2𝜃1
)

−
ℏ2

2𝜇
(𝛼′ + 𝜎′)2 

   (Eq. 50) 

 These superpartner potential are similar 
and differ only in their parameters. Consequently, 

to obtain 𝑉∓(𝜃1; 𝑎1,2,…, 𝑎𝑛) it is necessary to shift 

these parameters 𝛼′ → 𝛼′ + 1 and 𝜎′ → 𝜎′ + 1. 

 By generalization using a characteristic of 
shape invariance (15), it is obtained 

𝑅(𝜃1; 𝑎𝑛) = −
ℏ2

2𝜇
((𝛼′ + 𝜎′ + 2(𝑛 − 1))2

+ (𝛼′ + 𝜎′ + 2𝑛)2) 
   (Eq. 51) 

Therefore, by using equation (17) and (18), the 
eigenvalue for angular part 𝜃1 can be easily 
obtained as 
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𝐸𝑛𝑙
(𝜃1) =

ℏ2

2𝜇
(𝛼′ + 𝜎′ + 2𝑛𝑙1)2 

   (Eq. 52) 
hence, it has got 

𝜆1 = (𝛼′ + 𝜎′ + 2𝑛𝑙1)2 
   (Eq. 53) 

where 𝑛𝑙 is the orbital quantum number. 

Applying the superpotential (44) on 
equation (11) has raised and lowered operator, 
respectively. 

𝐴+(𝜃1) = −
ℏ

√2𝜇

𝑑

𝑑𝜃1
+

ℏ

√2𝜇
(−𝛼′cot𝜃1 + 𝜎′tan𝜃1) 

   (Eq. 54) 

𝐴−(𝜃1) =
ℏ

√2𝜇

𝑑

𝑑𝜃1
+

ℏ

√2𝜇
(−𝛼′cot𝜃1 + 𝜎′tan𝜃1) 

   (Eq. 55) 

Thus, using equation (55) and (19) it is obtained 
the ground-state angular 𝜃1 wave function as 

𝜓0
(−)(𝜃1) = ℵ𝜃1

(sin𝜃1)𝛼′
(cos𝜃1)𝜎′

 

   (Eq. 56) 

with ℵ𝜃1
 is the normalization constant of angular 𝜃1 

wave function. 
 
3.1.2  Solution of angular 𝜽𝟐  

 
 Substitute the angular 𝜃1 potential in 
equations (3) and (6) into equation (38) 

−
ℏ2

2𝜇

𝑑2𝑄2(𝜃2)

𝑑𝜃2
2

+
ℏ2

2𝜇
(

𝜐2(𝜐2 + 1) + (𝜆1 −
1
4)

sin2𝜃2

−2𝜌2cot𝜃2

) 𝑄2(𝜃2)

=
ℏ2

2𝜇
(

1

4
+ 𝜆2) 𝑄2(𝜃2) 

   (Eq. 57) 
thus it is obtained its effective potential as, 

𝑉eff(𝜃2) =
ℏ2

2𝜇
(

𝜐2
′ (𝜐2

′ + 1)

sin2𝜃2
− 2𝜌2cot𝜃2) 

   (Eq. 58) 

where 𝜐2
′ = √𝜐2(𝜐2 + 1) + 𝜆1 −

1

2
 and 𝐸𝜃2

=
ℏ2

2𝜇
(

1

4
+

𝜆2). 

 By using following hypothetical 
superpotential for the effective potential (58), 

𝑊(𝜃2) =
ℏ

√2𝜇
(𝐵2cot𝜃2 +

𝐶

𝐵2
) 

   (Eq. 59) 

And inserting (58) and (59) into equation (14) 

ℏ2

2𝜇
(

𝜐2
′ (𝜐2

′ + 1)

sin2𝜃2
− 2𝜌2cot𝜃2) − 𝐸0(𝜃2) 

=
ℏ2

2𝜇
(

𝐵2
2 + 𝐵2

sin2𝜃1
− 2𝜌2cot𝜃2) +

ℏ2

2𝜇
(

𝐶2

𝐵2
− 𝐵2

2) 

   (Eq. 60) 

It is got several parameter relations as follows 

𝐵2 = 𝜐2
′  

  (Eq. 61) 
                       

𝐶2 = 𝜌2 
  (Eq. 62) 

𝐸0(𝜃2) = −
ℏ2

2𝜇
(

𝐶2

𝐵2
− 𝐵2

2) 

  (Eq. 63) 

The superpartner potential for the angular 𝜃2 part 
is obtained by substituting equation (59) and (61) 
– (63) into (12). 

𝑉−(𝜃2; 𝑎0) =
ℏ2

2𝜇
(

𝜐2
′ (𝜐2

′ + 1)

sin2𝜃2
− 2𝜌2cot𝜃2)

+
ℏ2

2𝜇
(

𝐶2

𝜐2
′ − 𝜐2

′ 2
) 

   (Eq. 64) 

𝑉+(𝜃2; 𝑎0) =
ℏ2

2𝜇
(

𝜐2
′ (𝜐2

′ − 1)

sin2𝜃2
− 2𝜌2cot𝜃2)

+
ℏ2

2𝜇
(

𝐶2

𝜐2
′ − 𝜐2

′ 2
) 

   (Eq. 65) 

  These superpartner potential (64) and (66) 
are similar and differ only on their parameters. 

Consequently, to obtain 𝑉∓(𝜃2; 𝑎1,2,…, 𝑎𝑛) it is 

necessary to shift these parameters 𝜐′ → 𝜐′ − 1. 

 By generalization using a characteristic of 
shape invariance (15), it is obtained 

𝑅(𝜃2; 𝑎𝑛) =
ℏ2

2𝜇
(

𝜌2
2

𝜐2
′ 2 − 𝜐2

′ 2
)

−
ℏ2

2𝜇
(

𝜌2
2

(𝜐2
′ − 𝑛)2

− (𝜐2
′ − 𝑛)2) 

   (Eq. 66) 

Therefore, by using equation (17), (18) and (63), 
the eigenvalue for angular 𝜃2 can be obtained 
easily as 

𝐸𝑛𝑙
(𝜃2) = −

ℏ2

2𝜇
(

𝜌2
2

(𝜐2
′ − 𝑛𝑙2)2

− (𝜐2
′ − 𝑛𝑙2)2) 

   (Eq. 67) 

hence, it is got 
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𝜆2 = −
𝜌2

2

(√𝜐2(𝜐2 + 1) + 𝜆1 − 𝑛𝑙2)
2 

                   + (√𝜐2(𝜐2 + 1) + 𝜆1 − 𝑛𝑙2)
2

−
1

4
 

   (Eq. 68) 

 Apply the superpotential (59) on equation 
(11), then it has got raising and lowering operator, 
respectively. 

𝐴+(𝜃2; 𝑎0) = −
ℏ

√2𝜇

𝑑

𝑑𝜃2
+

ℏ

√2𝜇
(𝜐′

2tan𝜃2 +
𝜌2

𝜐′
2

) 

   (Eq. 69) 

𝐴−(𝜃2; 𝑎0) =
ℏ

√2𝜇

𝑑

𝑑𝜃2
+

ℏ

√2𝜇
(𝜐′

2tan𝜃2 +
𝜌2

𝜐′
2

) 

   (Eq. 70) 

 Thus, using equation (70) and (19) it is 
obtained the ground-state angular 𝜃2 wave 
function as 

𝑃0
(−)(𝜃2) = ℵ𝜃2

(sin𝜃2)𝜐2
′
𝑒

−
𝜌2
𝜐′

2
𝜃2

 

   (Eq. 71) 

with ℵ𝜃2
 is the normalization constant of angular 

𝜃2 wave function. 

 
3.1.3  Solution of angular 𝜽𝟑, 𝜽𝟒, and 𝜽𝟓  

 
 Using similar steps as well as the solution 
for 𝜃2 it is obtained the 𝜆3, 𝜆4, and 𝜆5, respectively. 

𝜆3 = (−
𝜌3

2

(𝜐3
′ − 𝑛𝑙3)2

+ (𝜐3
′ − 𝑛𝑙3)2) − 1 

   (Eq. 72) 

𝜆4 = (−
𝜌4

2

(𝜐4
′ − 𝑛𝑙4)2

+ (𝜐4
′ − 𝑛𝑙4)2) −

9

4
 

   (Eq. 73) 

𝜆5 = (−
𝜌5

2

(𝜐5
′ − 𝑛𝑙5)2

+ (𝜐5
′ − 𝑛𝑙5)2) − 4 

   (Eq. 74) 

where, 

𝜐3
′ = √𝜐3(𝜐3 + 1) + 𝜆2 +

1

4
−

1

2
 

   (Eq. 75) 

𝜐4
′ = √𝜐4(𝜐4 + 1) + 𝜆3 + 1 −

1

2
 

   (Eq. 76) 

𝜐5
′ = √𝜐3(𝜐3 + 1) + 𝜆4 +

9

4
−

1

2
 

   (Eq. 77) 

 Furthermore, the groundstate wave 

function for angular  𝜃3, 𝜃4, and 𝜃5  are 

𝑃0
(−)(𝜃3) = ℵ𝜃3

(sin𝜃3)𝜐3
′
𝑒

−
𝜌3
𝜐′

3
𝜃3

 

   (Eq. 78) 

𝑃0
(−)(𝜃4) = ℵ𝜃4

(sin𝜃4)𝜐4
′
𝑒

−
𝜌4
𝜐′

4
𝜃4

 

   (Eq. 79) 

𝑃0
(−)(𝜃5) = ℵ𝜃5

(sin𝜃5)𝜐5
′
𝑒

−
𝜌5
𝜐′

5
𝜃5

 

   (Eq. 80) 
with ℵ𝜃3

, ℵ𝜃4
, and ℵ𝜃5

 are the normalization 

constant.  

 
3.1.4  Solution of radial part  

 
 The radial Schrodinger equation (36) with 
DRSO plus Manning Rosen potential (9) in D-
dimensional space 

{−
ℏ2

2𝜇

𝑑2

𝑑𝑟2
+

1

2
𝜇𝜔2𝑟2 +

ℏ2

2𝜇

𝜆5 +
15
4

𝑟2
− 𝐸} 𝜒(𝑟) = 0 

   (Eq. 81) 

has the following effective potential 

𝑉eff(𝑟) =
1

2
𝜇𝜔2𝑟2 +

ℏ2

2𝜇

𝑚(𝑚 + 1)

𝑟2
 

   (Eq. 82) 

where 𝑚(𝑚 + 1) = 𝜆5 +
15

4
, or 

𝑚 = √𝜆5 +
15

4
+

1

4
−

1

2
 

   (Eq. 83) 

Further, substituting this radial effective 
potential (82) with its hypothetical superpotential 
(84) 

𝑊(𝑟) = 𝐾𝑟 +
𝑉

𝑟
 

   (Eq. 84) 

into equation (14) 

1

2
𝜇𝜔2𝑟2 +

ℏ2

2𝜇

𝑚(𝑚 + 1)

𝑟2
− 𝐸0(𝑟)

= (𝐾2𝑟2 +
𝑉(𝑉 + 1)

𝑟2 )

+ 2𝐾 (𝑉 −
1

2
) 

   (Eq. 85) 
then it has got some following relation 

𝐾 = 𝜔√
𝜇

2
 

   (Eq. 86) 
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𝑉 = −
ℏ

√2𝜇
(𝑚 + 1) 

   (Eq. 87) 

𝐸0(𝑟) = 𝜔ℏ (𝑚 +
3

2
) 

   (Eq. 88) 

 As well as previous work on the angular 
part, now it is possible to determine the 
superpotential of the radial part by applying 
equations (44), (46) – (48) into equation (12). 

𝑉−(𝑟; 𝑎0) =
𝜇𝜔2

2
𝑟2 +

ℏ2

2𝜇

𝑚(𝑚 + 1)

𝑟2
− 𝜔ℏ (𝑚 +

3

2
) 

   (Eq. 89) 

𝑉+(𝑟; 𝑎0) =
𝜇𝜔2

2
𝑟2 +

ℏ2

2𝜇

(𝑚 + 1)(𝑚 + 2)

𝑟2

− 𝜔ℏ (𝑚 +
1

2
) 

   (Eq. 90) 

 Via a mapping parameter 𝑚 → 𝑚 + 1 on 
equation (89) and (90), it has got 
𝑉∓(𝑟; 𝑎1, 𝑎2, … , 𝑎𝑛). Further, using the 
characteristic of shape invariance (15) and (17) it 
is obtained 

𝑅(𝑟; 𝑎𝑛) = 2𝜔ℏ 
   (Eq. 91) 

and 𝐸𝑛
(−) = 2𝑛𝜔ℏ. Therefore, using equation (18) 

it has got the energy eigenvalue for the radial part 
as 

𝐸𝑛𝑟
(𝑟) = 𝜔ℏ ((√𝜆5 +

15

4
+

1

4
−

1

2
) +

3

2
+ 2𝑛𝑟) 

   (Eq. 92) 

 The raising and lowering operators are 
obtained using superpotential W(𝑟) (84) and 
equation (11) 

𝐴+(𝑟) = −
ℏ

√2𝜇

𝑑

𝑑𝑟
+ √

𝜇

2
𝜔𝑟 −

ℏ

√2𝜇

(𝑚 + 1)

𝑟
 

   (Eq. 93) 

𝐴−(𝑟) =
ℏ

√2𝜇

𝑑

𝑑𝑟
+ √

𝜇

2
𝜔𝑟 −

ℏ

√2𝜇

(𝑚 + 1)

𝑟
 

   (Eq. 94) 

 Finally, applying equation (94) on (19) and 
continue with equation (93) and (20) it is obtained 
the ground-state and first excited radial 𝑟 wave 
function, respectively, 

𝑅0
(−)(𝑟) = ℵ𝑟𝑟

((√𝜆5−
15
4

+
1
4

−
1
2)+1)

𝑒
−(

𝜇
2ℏ

𝜔𝑟2)
 

   (Eq. 95) 

𝑅1
(−)(𝑟) = ℵ𝑟 (√2𝜇𝜔𝑟 −

ℏ

√2𝜇

2 (𝑚 +
3
2

)

𝑟
) 

(𝑟(𝑚+2))𝑒
−(

𝜇
2ℏ

𝜔𝑟2)
 

   (Eq. 96) 

 with ℵ𝑟 is the normalization constant of the 

radial 𝑟 wave function. Since the ∫−∞

∞
|ℵ𝑥𝜓0|2𝑑𝑥 =

1, then it has got 

ℵ𝑟 = √
(

𝜇𝜔
2ℏ

)
(

2𝑚+3
2

)

𝛤 (
2𝑚 + 3

2
)

 

   (Eq. 97) 
3.2. Thermodynamics Properties  
 
 To obtain some thermodynamics 
properties such as the vibrational mean energy 𝑈, 
specific heat 𝐶, vibrational free energy 𝐹, and 

vibrational entropy 𝑆 it is necessary to derive the 
partition function 𝑍 equation first. This function is 
also known as the distribution function and its 
existence is important since someone wants to 
study the thermodynamical properties. 
Furthermore, this function can be derived using 
the energy equation from the considered system 
(Akpan N Ikot et al., 2018; Suparmi, Cari, and 
Pratiwi, 2016). The partition function for the 6-
dimensional system with DRSO plus Manning 
Rosen potentials can be written as 

𝑍(𝜁, 𝛽) = ∑
𝑛=0

𝜁

𝑒−𝛽𝐸𝑛 , 𝛽 =
1

𝑘𝐵𝑇
 

   (Eq. 98) 

with 𝑘𝐵 and 𝑇 are Boltzmann constant and 
temperature, 𝐸𝑛 is the nonrelativistic energy from 
the system. Rewrite the energy equation (92) 

𝐸𝑛𝑟 = 𝜔ℏ (𝑚 +
1

2
+ 2𝑛𝑟 + 1) 

   (Eq. 99) 

with 𝑚 = 𝜆5 +
15

4
+

1

4
−

1

2
. 

 Therefore it is obtained the vibrational 
partition function 𝑍 as follow 

𝑍(𝛽) = ∑
𝑛=0

∞

𝑒
−𝛽𝜔ℏ(𝑚+

1
2

+2𝑛𝑟+1)

= 𝑒
−𝛽𝜔ℏ(𝑚+

1
2

) 1

2 sinh(𝛽𝜔ℏ)
 

   (Eq. 100) 
 
3.2.1  Vibrational Mean Energy  

 
 The vibrational mean energy 𝑈 for DRSO 
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plus Manning Rosen potential in 6-dimensional 
space is  

𝑈(𝛽) = −
𝜕

𝜕𝛽
𝑙𝑛(𝑍)

= −
𝜕

𝜕𝛽
ln (𝑒

−𝛽𝜔ℏ(𝑚+
1
2

) 1

2 sinh(𝛽𝜔ℏ)
)

= 𝜔ℏ (𝑚 +
1

2
) + 𝜔ℏ coth(𝛽𝜔ℏ) 

   (Eq. 101) 
 
3.2.2  Vibrational Specific Heat  

 
 The vibrational mean energy 𝐶 for DRSO 
plus Manning Rosen potential in 6-dimensional 
space is  

𝐶(𝛽) = −
𝜕𝑈

𝜕𝑇
= −𝑘𝐵𝛽2 (

𝜕𝑈

𝜕𝛽
)

= 𝑘𝐵(𝜔ℏ𝛽)2csch2(𝛽𝜔ℏ) 
   (Eq. 102) 
 
3.2.3  Vibrational Free Energy  

 
 The vibrational free energy 𝐹 for the DRSO 
plus Manning Rosen potential in D-dimensional 
system is solved as follows 

𝐹 = −
1

𝛽
ln𝑍 = 𝜔ℏ (𝑚 +

1

2
) +

ln(2 sinh(𝛽𝜔ℏ))

𝛽
 

   (Eq. 103) 
 
3.2.4  Vibrational Entropy  

 
 The vibrational entropy 𝑆 for the DRSO 
plus Manning Rosen potential in D-dimensional 
system is solved as follows 

𝑆(𝛽) = 𝑘ln𝑍 + 𝑘𝑇 (
𝜕ln𝑍

𝜕𝑇
) 

𝑆(𝛽) = 𝑘𝛽𝜔ℏ coth(𝛽𝜔ℏ) − 𝑘ln(2 sinh(𝛽𝜔ℏ)) 
 
  (Eq. 104) 
 
3.3. Discussion  
 

The analysis of the energy values, wave 
functions, and thermodynamics properties are 
explained by graphical representation. To obtain 
the graphics of energy versus radial quantum 
number 𝑛𝑟, equation (92) was used by substituting 
the separable constants 𝜆5 (74), 𝜆4 (73), 𝜆3 (72), 

𝜆2 (68), and 𝜆1 (53). 

 From Figure 1, the energy versus radial 
quantum number 𝑛𝑟 was plotted for various orbital 
quantum number 𝑛𝑙 by set the ℏ =  𝜇 = 1, 𝜔 = 𝛼 =
𝜎 = 𝜐𝑖 = 𝜌𝑖 = 5. The graphic shows that every 
increment of the orbital quantum number tends to 
decrease energy, with the increment of 𝑛𝑙5 causes 

more decrement than other orbital quantum 
numbers. Exceptionally for the 𝑛𝑙1, when its 
increase caused a decrease at energy. From 
Figure 2, the energy versus radial quantum 
number 𝑛𝑟 was plotted for various values of the 
potential parameters. It shows that in general, the 
increment of potentials parameters made an 
increase in energy values, with the increment of 𝜔 
causes more increment than others. Exceptions 
for 𝜌𝑖 enhancement, it decreases the energy 
values, although the effect is insignificant. 

The behavior of radially DRSO plus 
Manning Rosen's potentials wave function in 6-
dimensional system as a function of 𝑟 are 
presented from Figures 3 and 4. Figure 3 presents 
the effect of orbital quantum numbers 𝑛𝑙 against 
radial ground state wave functions. The graphic 
shows that in general, the increases of 𝑛𝑙 cause 
the amplitude to become large, together with the 
wave functions move to the left. The angular 
quantum number 𝑛𝑙5 has more influence than 

others. Exceptional for the increment of 𝑛𝑙1 it 
causes the wave amplitude to becomes lower, and 
the wave function moves to the right. Figure 4 
presents the potential parameters against the 
radial ground state wave functions. The graphic 
shows that the amplitude of wave function 
becomes large and move to the left caused by the 
increase of 𝜔 and 𝜌𝑖, but becomes lower and move 
to the right cause by the increase of 𝛼, 𝜎, and 𝜐𝑖.  

 For Figure 5 – Figure 9 it was set ℏ = 𝜇 =
1, 𝑛𝑟 = 𝑛𝑙𝑖 = 1. It was plotted the partition function 

𝑍(𝛽) and some thermodynamical properties such 
as  𝑈(𝛽), 𝐶(𝛽), 𝐹(𝛽) and 𝑆(𝛽) for various values 
of frequencies 𝜔 and parameters of angular 
potentials.  

It could be observed from Figure 5 that the 
partition function 𝑍 decreases monotonically with 
increasing of 𝛽 and some potential parameters 𝜔, 

𝛼, 𝜎, and 𝜈𝑖. With, the frequency 𝜔 from DRSO 
plus Manning Rosen Potential leads more 
dominant than some angular parameters 𝛼, 𝜎, 𝜈𝑖. 
Unlike other, increasing of all 𝜌𝑖 escalates the  𝑍 
becoming more increase, although it is too small 
compared to the 𝜔. From Figure 6, for every value 
of DRSO plus Manning Rosen potential 
parameters 𝜔, 𝛼, 𝜎, 𝜈𝑖 and 𝜌𝑖 it is offered, the 
vibrational mean energy 𝑈 decreases 

monotonically as the increasing of 𝛽. Moreover, 𝑈 
is increased when the frequency and other angular 
parameters 𝛼, 𝜎, 𝜈𝑖 enlarged. With, the 𝜔 
parameter leads more dominant than some 
angular parameters 𝛼, 𝜎, 𝜈𝑖. Exceptional for 𝜌𝑖, 

increasing of all 𝜌𝑖 decreases the  𝑍, although it is 
too small compared to the 𝜔. Based on Figure 7, 
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the specific heat 𝐶 decreases monotonically as 
increasing of 𝛽 and frequencies 𝜔. Meanwhile, this 

is unique because other angular parameters 𝛼, 𝜎, 
𝜈𝑖, and 𝜌𝑖 are not affecting 𝐶. Figure 8 shows that 

for every value of 𝜔, 𝛼, 𝜎, 𝜈𝑖, and 𝜌𝑖 it is offered, 
the vibrational free energy 𝐹 of the system with 
DRSO plus Manning-Rosen potential increases 
monotonically as the increasing of 𝛽 and some 
potentials parameters. With, 𝜈𝑖, and 𝜔 lead more 

dominant than 𝛼 and 𝜎. Meanwhile, the increase 
in all 𝜌𝑖 decreases the  𝐹, although it is too small 
compared to other parameters. From Figure 9, it 
can be observed that for every value of potential 
parameters it is offered, the vibrational entropy 𝑆 
of the system decreases monotonically as the 
increasing of 𝛽 and 𝜔. It appears that variations on 
angular parameters 𝛼, 𝜎, 𝜈𝑖 and 𝜌𝑖 does not effect 
on 𝑆.  

 

4. CONCLUSION:  
 
The energy spectrum and ground-state 

wave function of the 6-dimensional Schrodinger 
equation governed by the Double Ring-Shape 
Oscillator (DRSO) plus Manning Rosen potential 
have been obtained using SUSY QM method. In 
general, the increment of orbital quantum numbers 
decreases the energy, but specifically for the 
increment of 𝑛𝑙1 cause increases at energy values. 
Overall, the increment of the potential parameters 
increases the energy values, with the increment of 
𝜔 causes more enhancement in energy values 
compares to the other potentials parameters. The 
angular quantum numbers and potential 
parameters have also influence on wave 
functions. In general, the increment of orbital 
quantum numbers and the potential parameters 
causes the wave amplitude to become high, and 
the wave functions move to the left. Specifically, 
for the increment at 𝑛𝑙1, 𝛼, 𝜎, and 𝜌 cause the 
wave amplitude to become low, and the wave 
functions move to the right.  The energy spectrum 
equation was used to derive the partition function. 
This partition function was employed to obtain the 
thermodynamics properties such as vibrational 
and vibrationalmean energy 𝑈, vibrational specific 
heat 𝐶, vibrational free energy 𝐹 and vibrational 

entropy energy 𝑆. The vibrational mean energy 𝑈 
and free energy 𝐹 were increasing as the 

increased of all potentials parameters, with the 𝜔 
is more dominant compare to the others.  
Vibrational specific heat 𝐶 and vibrational entropy 

𝑆 only affected by the 𝜔, where 𝐶 and 𝑆 decreasing 
as the increment of the 𝜔.  
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Figure 1.  The plot of energy for various 𝑛𝑙 

ℏ =  𝜇 = 1, 𝜔 = 𝛼 = 𝜎 = 𝜐𝑖 = 𝜌𝑖 = 5 
 

 

 
Figure 2.  The plot of energy for various potentials parameter  

ℏ =  𝜇 = 1, 𝑛𝑙𝑖 = 1 
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Figure 3.  The plot of the groundstate radial wave function 𝑅0 vs 𝑟 for various 𝑛𝑙 

ℏ =  𝜇 = 1, 𝜔 = 𝛼 = 𝜎 = 𝜐𝑖 = 𝜌𝑖 = 5 
 

 
 

Figure 4.  The plot of the groundstate radial wave function 𝑅0 vs 𝑟 for various potentials parameters 

ℏ =  𝜇 = 1, 𝑛𝑟 =  𝑛𝑙𝑖 = 1  
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Figure 5.  Partition function 𝑍 vs 𝛽  
ℏ =  𝜇 = 1, 𝑛𝑟 =  𝑛𝑙𝑖 = 1 

 

 
 

Figure 6.  Vibrational mean energy 𝑈 vs 𝛽  

ℏ =  𝜇 = 1, 𝑛𝑟 =  𝑛𝑙𝑖 = 1 
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Figure 7. Vibrational specific heat 𝐶 vs 𝛽  
ℏ =  𝜇 = 1, 𝑛𝑟 =  𝑛𝑙𝑖 = 1 

 

 
 

Figure 8.  Vibrational free energy 𝐹 vs 𝛽 
ℏ =  𝜇 = 1, 𝑛𝑟 =  𝑛𝑙𝑖 = 1 
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Figure 9.  Vibrational entropy 𝑆 vs 𝛽 

ℏ =  𝜇 = 1, 𝑛𝑟 =  𝑛𝑙𝑖 = 1 
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