### SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY SOUTH. BRAZ. J. CHEM., Vol. 5, N° 5, 1997

21

### X-RAY STUDIES ON Tl<sub>2</sub>HgI<sub>4</sub>, PbHgI<sub>4</sub>, CdHgI<sub>4</sub> AND Au<sub>2</sub>HgI<sub>4</sub> INORGANIC COMBINATIONS

### Tudor ROSU\*,Lidia PARUTA\*\*,Mirela CALINESCU\*,Anca EMANDI\*

Faculty of Chemistry - University Bucharest, 70609 Bucharest, Romania
Institute of Physical Chemistry of Romanian Academy, Spl. Independentei 202, 77208 Bucharest, Romania

### ABSTRACT

The parameters of the crystalline elementary cells were calculated starting from the diffraction X-ray spectra obtained on microcrystalline powders of compounds with thermochromic and semiconductor properties. The respective cell/units belong to the tetragonal system and have the following values: a=6.450 A, c=3.14 A for the Tl<sub>2</sub>HgI<sub>4</sub> compound; a=6.875 A, c=13.110 A for the PbHgI<sub>4</sub> compound; a=6.40 A, c=13.12 A for the Au<sub>2</sub>HgI<sub>4</sub> compound. The wet synthesis method is described for the CdHgI<sub>4</sub> compounds.

### **RESUMO**

Os parâmetros das células unitárias cristalinas foram calculados a partir de espectra de difração de raiosx obtidos de pos microcristalinos dos compostos que exibem propriedades termocrómicas e semicondutoras. As respectivas células unitárias pertencem ao grupo tetragonal e tem os seguintes valores: a=6.450A, c=3.14A para T1\_HgI<sub>4</sub>; a=6.875A, c=13.11A para o composto PbHgI<sub>4</sub>; a=6.40A, C=I3.12A para o composto Au<sub>2</sub>HgI<sub>4</sub>. A sintese via úmida dos compostos do grupo CdHgI<sub>4</sub> é descrita.

KEYWORDS : X- Ray diffraction, tetraiodomercurates, thermocromic properties, semiconductor properties, cell parameters.

X-Ray Studies of HgI<sub>4</sub> Complexes of Tl, Pb, Cd and Au

### INTRODUCTION

Barlot and all<sup>1</sup> supplied (1921) the first information regarding to the physicochemical properties of the Tl<sub>2</sub>HgI<sub>4</sub> compound, specifying that these properties are much different to that of the Ag2HgI4 and Cu2HgI4 compounds. No details regarding this compound were known since 1973, when Halmos and al 2 had synthesised and studied the Tl<sub>2</sub>HgI<sub>4</sub> and PbHgI<sub>4</sub> compounds. They expressed the electrical conductibility versus the temperature and the differential thermal analysis, with no details regarding the type and the parameters of the crystalline lattice. It was 1975 when Joy<sup>3</sup> performed the X-ray diffraction spectra on the Tl<sub>2</sub>HgI<sub>4</sub> compound, without establishing its structure. Ammlung and all contributors<sup>4</sup> in 1979, measured the electrical conductibility of the Tl<sub>2</sub>HgI<sub>4</sub> compound, at 250°C, a much lower temperature than the corresponding ones for the  $M_2HgI_4$  homologues (M<sup>+</sup> = Ag<sup>+</sup>, Cu<sup>+</sup>), as a result of the decreased mobility of the TI+ ion, compared with Ag+ and Cu+ ions. The dependence of the Raman spectra for the  $Tl_2HgI_4$  and  $PbHgI_4$  compounds on pressure , was studied in 1983 by Adams and all<sup>5</sup>, obtaining information about the existence of the phase transitions for these compounds, under the pressure effect. The thermoanalytic behaviour of the  $Tl_2HgI_4$  and  $PbHgI_4$  compounds was studied in 1986 by Negoiu and all<sup>6</sup>, in order to clear up the thermocromic transitions temperatures. Two compounds were also added to the  $M_xHgI_4$  complex combination class, (M<sup>+</sup> = Ag<sup>+</sup>, Cu<sup>+</sup>, Tl<sup>+</sup>, Pb<sup>2+</sup>), namely CdHgI<sub>4</sub> and Au<sub>2</sub>HgI<sub>4</sub>. These last compounds haven't been described in the speciality literature and data confirming the formation of the respective compound or other information referring to its physico-chemical properties are not known yet.

The aim of this paper is to establish and finalise the crystalline structure of the mentioned combinations. In order to provide a comparison basis, the authors considered necessary to synthesise the  $Cu_2HgI_4$  and  $Ag_2HgI_4$  compounds and to study the X-ray diffraction spectra on the powders of these compounds. The diffractometric data, compared to the one existing in the literature, is represented in table 3 and 4.

...

### SOUTH. BRAZ. J. CHEM., Vol. 5, Nº 5, 1997

T. Rosu, L. Paruta, M. Calinescu & A. Emandi

The  $Tl_2HgI_4$  and PbHgI<sub>4</sub> combinations have been obtained through the wet synthesis described by Well and all<sup>7</sup>, otherwise applied by Adams too, in 1983. This method isn't much different to the one used for obtaining the  $Ag_2HgI_4$ .

The same technique has been generally applied for the CdHgI<sub>4</sub> and Au<sub>2</sub>HgI<sub>4</sub> compounds. A CdI<sub>2</sub> (0,5 M) and a AuCl (0,5 M) solution respectively were added to a  $K_2$ HgI<sub>4</sub> (4 M) solution, until the stoechiometric ratio is reached. The solution obtained by this method were slowly heated at 75 - 80 °C. Carmin-red, respectively redish-golden precipitates were formed, containing crystals with metallic-reflexion. The precipitates were then washed with water in order to remove the possible soluble impurities, were dried under vacuum on phosphorus pentoxide for 60 h, at the room temperature, and then kept in containers, until being used for investigation.

The compounds obtained by this method have been characterised by elementary analysis, as follows:

\* Mercury was determined through atomic absorption spectrophotometry method, described by El-Awady and all<sup>11</sup> and completed by Luca and all<sup>12</sup>.

Thus, the CdHgI<sub>4</sub> and Au<sub>2</sub>HgI<sub>4</sub> combinations were decomposed by the wet way, into an aq. HNO<sub>3</sub> solution (1 N), through slowly heating. Then, the mercury was brought back by the elementary state using Sn<sup>2+</sup> chloride and drowe through the cell of an atomic absorbtion spectrophotometer. The absorbtion of the radiation was determined at  $\lambda = 253.7$  nm.

The standard Hg (II) solution with a 1000  $\mu$ g/ml concentration, was obtained by dissolving the necessary pure mercuric chloride quantity into distilled water. The mercury quantity within the complex samples (table 1 and 2) was calculated using the calibration curve.

\* Cadmium was determined according with the method described by Fries and Getrost<sup>13</sup>, using diphenilthyocarbazone, the solution to be analysed being brought to pH = 7-8. At pH = 7-8 the cadmium ions form, in the presence of the diphenilthyocarbazone a macromolecular complex, which exhibits a maximum absorbtion of the light radiation at  $\lambda = 520$  nm.

The standard Cd (II) solution, with 1000 µg/ml concentration was obtained by diluting the necessary quantity of pure CdI<sub>2</sub> into the distilled water. The calibration curve Abs ( $\lambda = 520$  nm) versus the standard Cd (II) concentration initially traced and the Cd<sup>2+</sup> quantity within the samples taken in work was calculated by extrapolating the calibration curve.

\* Gold was determined to the method described by Fries and Getros<sup>14</sup> using tetraethylrodamine, the analysed solution being brought to a pH = 5. In the presence of the B rhodamine, the gold ions form a macromolecular complex which is extracted in diisopropylic ether. The formed complex exhibits a maximum absorbtion of the light radiation at  $\lambda = 565$  nm.

The standard Au (I) solution with a 100  $\mu$ g/10 ml concentration was obtained by diluting the necessary pure AuCl quantity in distilled water. The Au<sup>+</sup> ions were complexed at once with B rhodamine, and the form compound was separated in diisopropylic ether. The calibration curve Abs ( $\lambda = 565$  nm) versus the standard Au (I) concentration was then traced. The Au<sup>+</sup> quantity was calculated by extrapolating this curve and using the samples taken in work.

\* Jodine was determined by difference, accordingly to the quantities of samples taken in work.

Tables 1 and 2 contain results obtained using five different complex of the  $CdHgI_4$  and  $Au_2HgI_4$  compounds.

All the obtained results confirm the formation of the  $CdHgI_4$  and  $Au_2HgI_4$  inorganic combinations.

The  $Tl_2HgI_4$ , PbHgI<sub>4</sub>, CdHgI<sub>4</sub> and Au<sub>2</sub>HgI<sub>4</sub> compounds obtained through this method are microcrystalline powders, in the following colours: yellow, orange, carmine-red and respectively, redish-golden.

The complex were dry ground to a mean size particles (aprox. 15  $\mu$ ) in order to perform X-ray diffraction studies. Determinations were performed at room temperature.

The diffraction spectra were obtained between 15 and 35% Bragg using a TUR-M-62 HZG apparatus equiped with 3 diffractometer. The CuK<sub> $\alpha$ </sub> radiation ( $\lambda = 1.54051$  A) was used, the radiation was filtered through a Ni sheet; the rate of the counter was 0.5 /min.

### **RESULTS AND DISCUSSION**

Tables 3 - 8 contain the "d" lines positions expressed in A and the relative intensities  $I/I_1$  of these lines, beside the same properties experimental obtained from diffraction spectra of the respective complex combinations.

This thing was carried out because it is not known quite if the conditions of the used preparation methods lead either to pure equilibrium compounds or to mixtures of non-equilibrium compounds and reactants.

Anyway, for the indexation, the diffraction lines of the reactants were as much as possible not taken in consideration.

In order to index the diffraction spectra on powders, the recurrent formulae given within the international crystallography tables of the cubic, tetragonal and rhombic systems were used. This thing was performed because the preliminary microscopic studies have shown that the crystalline shape of this compounds can be defined within one of this systems.

It has been proven that all the four compounds:  $Tl_2HgI_4$ ,  $PbHgI_4$ ,  $CdHgI_4$  and  $Au_2HgI_4$ , beside the  $Ag_2HgI_4$  and  $Cu_2HgI_4$  compounds belong to the tetragonal system, having the "d" parameter values and the hkl index shown in tables 3-8.

Tables 3 - 8.

Table 9 exhibits the crystalline elementary cells parameters of the  $M_xHgI_4$  synthesised complex combinations, compared to the existent literature data. These parameters were calculated using the diffraction patterns obtained on the microcrystalline powders of the compounds. At the room temperature, a single tetragonal structural phase (named  $\beta$  phase) exists for the up to date known  $M_xHgI_4$  substances class (M = Ag, Cu, Tl, Pb, Cd, Au).

Table 9.

As observed in table 9, the crystalline elementary cells parameters of the  $Ag_2HgI_4$  and  $Cu_2HgI_4$  compounds are likewise those presented within the literature<sup>4</sup>.

| Table 1. | Some | Properties | of | the | $CdHgI_4$ | Compound. |
|----------|------|------------|----|-----|-----------|-----------|

| No. | CdHgI4  | Cd <sup>2+</sup> , g/50ml |        | Hg <sup>2+</sup> , g/5 | I-,g/50ml |             |        |
|-----|---------|---------------------------|--------|------------------------|-----------|-------------|--------|
|     | g/50ml  | theoretical               | exp.   | theoretical            | exp.      | theoretical | exp.   |
| 1.  | 0.11095 | 0.0150                    | 0.0148 | 0.0270                 | 0.0258    | 0.0675      | 0.0689 |
| 2.  | 0.1460  | 0.0200                    | 0.0199 | 0.0357                 | 0.0350    | 0.0903      | 0.0911 |
| 3.  | 0.1326  | 0.0250                    | 0.0250 | 0.0446                 | 0.0452    | 0.1130      | 0.1124 |
| 4.  | 0.2191  | 0.0300                    | 0.0301 | 0.0535                 | 0.0543    | 0.1356      | 0.1347 |
| 5.  | 0.2556  | 0.0350                    | 0.0340 | 0.0625                 | 0.0630    | 0.1681      | 0.1586 |

Table 2. Some Properties of the  $Au_2HgI_4$  Compound.

| No. | Au <sub>2</sub> HgI <sub>4</sub> | Au <sup>+</sup> , g/50 | )ml    | Hg <sup>2+</sup> , g/\$ | I-,g /50ml |             |        |
|-----|----------------------------------|------------------------|--------|-------------------------|------------|-------------|--------|
|     | g/50ml                           | theoretical            | exp.   | theoretical             | exp.       | theoretical | exp.   |
| 1.  | 0.0140                           | 0.0050                 | 0.0048 | 0.0025                  | 0.0028     | 0.0065      | 0.0064 |
| 2.  | 0.0210                           | 0.0075                 | 0.0078 | 0.0038                  | 0.0041     | 0.0097      | 0.0091 |
| 3.  | 0.0285                           | 0.0100                 | 0.0098 | 0.0052                  | 0.0055     | 0.0133      | 0.0132 |
| ŧ.  | 0.0350                           | 0.0125                 | 0.0122 | 0.0064                  | 0.0060     | 0.0161      | 0.0168 |
| 5.  | 0.0420                           | 0.0150                 | 0.0147 | 0.0076                  | 0.0071     | 0.0194      | 0.0202 |

# SOUTH. BRAZ. J. CHEM., Vol. 5, N° 5, 1997 . Rosu, L. Paruta, M. Calinescu & A. Emandi

T.

Table 1

Table 2



SOUTH. BRAZ. J. CHEM., Vol. 5, Nº 5, 1997

# Table 3 X-Ray diffraction spectrum on Ag<sub>2</sub>Hgl<sub>4</sub> powder, compared to literature data

| •      | •                    |     | •    |                                      | , is an and a second |       |                         | n de la deservación d<br>La deservación de la d |             | a at a           | a an ann an a | a                    | and the second second |         | · · · · · · · · · · · · · · · · · · · |
|--------|----------------------|-----|------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|------------------------------------------|----------------------|-----------------------|---------|---------------------------------------|
|        | y – dgl <sup>4</sup> |     |      | Ag <sub>2</sub> HgI <sub>4</sub> [16 | ]                                                                                                               | ß     | -dg_HgI <sub>4</sub> [1 | 7]                                                                                                                                                                                                                                  |             | Ag2HgI4 [19]     | ]                                        |                      |                       | lg2Hg14 |                                       |
| d, X   | 1/1                  | hkl | d, A | 1/1 <sub>1</sub>                     | hkl                                                                                                             | d, 1  | I/I <sub>1</sub>        | hkl                                                                                                                                                                                                                                 | đ, <b>X</b> | I/I <sub>1</sub> | hkl                                      | d <sub>exp</sub> , k | 1/I <sub>1</sub>      | bkl     | d <sub>theoretical</sub> , 1          |
|        |                      |     | 6.27 | 2                                    | 200                                                                                                             | -     | -                       | -                                                                                                                                                                                                                                   | 6.33        | Fs               | 100                                      | 6.2668               | 14                    | 002     | 6.2668                                |
| ,<br>, |                      |     | 5.64 | 3                                    | 210                                                                                                             | 5.47  | 25                      | - 101                                                                                                                                                                                                                               | 5.69        | Fs               | 101                                      | 5.6253               | 19                    | 101     | 5.6364                                |
|        |                      |     | 4.47 | 3                                    | 220                                                                                                             | 4.42  | 25                      | 110                                                                                                                                                                                                                                 | 4.49        | Fs               | 110                                      | 4.4622               | 16                    | 110     | 4.4622                                |
| 3.75   | 100                  | 111 | -    | -                                    | -                                                                                                               | -     | -                       | -                                                                                                                                                                                                                                   | _           |                  | -                                        | 3.7384               | 19                    | -       |                                       |
|        |                      |     | 3.65 | 100                                  | 222                                                                                                             | 3.65  | 90                      | 112                                                                                                                                                                                                                                 | 3.61        | I                | 112                                      | 3.6390               | 100                   | 112     | 3.6349                                |
|        |                      |     | 3.50 | 2                                    | 320                                                                                                             | 3.50  | 25                      | 103                                                                                                                                                                                                                                 | 3.58        | Fs               | 103                                      | 3.4941               | 16                    | 103     | 3.4836                                |
|        |                      |     | -    | -                                    |                                                                                                                 | 3.14  | 20                      | 004,200                                                                                                                                                                                                                             | -           | -                | -                                        | -                    | -                     | -       |                                       |
|        |                      |     | 2.82 | 3                                    | 420                                                                                                             | 2.83  | 45 ·                    | 202                                                                                                                                                                                                                                 | 2.84        | S                | 210                                      | 2.8184               | 15                    | 202     | 2.8182                                |
|        |                      |     | 2.76 | 4                                    | 421                                                                                                             | 2.80  | 55                      | 211                                                                                                                                                                                                                                 | 2.77        | Fs               | 211                                      | 2.7525               | 15                    | 211     | 2.7532                                |
|        |                      |     | 2.57 | 2                                    | 422                                                                                                             | 2.57  | 45                      | 114                                                                                                                                                                                                                                 |             | -                | -                                        | 2.5728               | 14                    | 212     | 2.5733                                |
|        | ·                    |     | 2.48 | 1                                    | 510                                                                                                             | -     | -                       | -                                                                                                                                                                                                                                   | <b>-</b> .  | -                | -                                        | · -                  | -                     | -       | - •                                   |
|        |                      |     | 2.34 | 2                                    | ·F.II                                                                                                           | 2.34  | . 40                    | 105,213                                                                                                                                                                                                                             | 2.36        | Fs               | 213                                      | 2.3433               | 14                    | 213     | 2.3386 .                              |
| 2.30   | 60                   | 220 | -    | -                                    | -                                                                                                               | -     |                         | -                                                                                                                                                                                                                                   | -           | -                | ··· -·                                   | 2.2905               | 16                    | -       | -                                     |
|        |                      |     | 2.23 | 50                                   | 440                                                                                                             | 2.228 | 100                     | 204,220                                                                                                                                                                                                                             | 2.24        | · X              | 220                                      | 2.2317               | 49                    | 220     | 2.2311                                |
|        |                      |     | 2.10 | · 2                                  | 600,442                                                                                                         | 2.109 | 40                      | 005,222                                                                                                                                                                                                                             | 2.11        | Fs               | 222                                      | 2.1040               | 15                    | 222,300 | 2.1035                                |
|        |                      | . , | 258  | 2                                    | 610                                                                                                             | -     | <b>-</b> :              | -                                                                                                                                                                                                                                   | 2.08        | Fs               | 301                                      |                      | -                     | 006,214 | 2.0889                                |
| 1.96   | 30                   | 311 | 1.90 | 30                                   | 622                                                                                                             | 1.90  | 100´.                   | 116,312                                                                                                                                                                                                                             | 1.91        | X                | 312                                      | 1.9239               | 28                    | 312     | 1.9015                                |
|        |                      |     | 1.88 | 1                                    | 630, 543                                                                                                        | -     | -                       | -                                                                                                                                                                                                                                   | · ·         | -                | -                                        | 1.9034               | 28                    | 116     | 1.8919                                |

\* - J.C.P.D.S. 9-399; \*\* - this paper

\_\_\_\_\_J

|              | HgI <sub>2</sub> | *   |      | β                | -Cu <sub>2</sub> HgI <sub>4</sub> [17] |                    | β   | -Cu <sub>2</sub> HgI <sub>4</sub> ** |            |
|--------------|------------------|-----|------|------------------|----------------------------------------|--------------------|-----|--------------------------------------|------------|
| <b>1</b> , A | И1               | hkl | d, A | I/I <sub>1</sub> | hkl                                    | d <sub>exp</sub> A | И1  | hkl d <sub>tl</sub>                  | eoreticadA |
| .22          | 55               | 002 | *    |                  | •••••••••••••••••••••••••••••••••••••• | 6.2056             | 12  |                                      |            |
|              | •                | -   | 5.42 | 25               | 101                                    | 5.4399             | 14  | 101                                  | 5.4399     |
| .12          | 70               | 101 | •    | -                | -                                      | 4.1106             | 16  | -                                    | -          |
| 58           | 100              | 102 | *    | -                | ~                                      | 3.5699             | 31  | *                                    | -          |
|              | -                | •   | 3.52 | 100              | 112                                    | 3.5172             | 100 | 112                                  | 3.5116     |
|              | -                | -   | 3.43 | 25               | 103                                    | 3.3857             | 14  | 103 .                                | 3.3744     |
| 11           | 3                | 004 | -    | -                | -                                      | -                  | -   | -                                    | -          |
| .09          | 2                | 110 | -    | -                | -                                      | -                  | ÷   | -                                    | -          |
|              | -                | -   | 3.05 | 15               | 200;004                                | -                  | -   | 200,004                              | 3.0407     |
| 01           | 40               | 103 | -    | ~                | -                                      | 3.0034             | 14  | •                                    | -          |
| 768          | 30               | 112 | 2.72 | 10               | 202                                    | 2.7592             | 10  | 104;202                              | 2.7207     |
|              | -                | -   | -    | -                | -                                      | -                  | -   | <b>-</b>                             | 2.7199     |
|              | -                | ~   | 2.67 | 30               | 211                                    | 2.6542             | 12  | 211                                  | 2.6542     |
| 534          | 7                | 104 | 2.52 | 10               | 114                                    | -                  | **  | <b>-</b> ,                           | -          |
|              | -                | -   | 2.27 | 35               | 105                                    | 2.2618             | 10  | 105;213                              | 2.2595     |
|              | -                | -   | -    | -                | -                                      | -                  | +   | +                                    | 2.2589     |
| 192          | 60               | 114 | -    | -                | -                                      | -                  | *   | •                                    | -          |
| 186          | 55               | 200 | -    | -                | -                                      | 2.1881             | 12  | •                                    | -          |
| 163          | 15               | 105 | 2.15 | 100              | 220;204                                | 2.1562             | 24  | 220;204                              | 2.1501     |
|              | -                | -   | -    | -                | -                                      | -                  | -   | -                                    | 2.1506     |
|              | -                | -   | -    | -                | -                                      | 2.1454             | 20  | 115;221                              | 2.1180     |
|              | -                | -   | -    | -                | -                                      | -                  | -   | -                                    | 2.1173     |
| 074          | 15               | 006 | 2.04 | 10               | 226;006                                | 2.0651             | 8   | 224;006                              | 2.0272     |
|              | -                | -   | -    | -                | -                                      | -                  | **  | *                                    | -          |

Table 4. X-Ray diffraction spectrum on Cu<sub>2</sub>HgI<sub>4</sub> powder, compared to literature data

\* J.C.P.D.S. 21-1157 \*\* This paper

SOUTH. BRAZ. J. CHEM., Vol. 5, Nº 5, 1997 Paruta R Calinescu & A. Emandi

.X-Ray Studies of HgI4 Complexes of Tl,Pb,Cd and Au

# Table 5. X-Ray diffraction spectrum on PbHgl<sub>4</sub> powder

| HgI2   |                  |     |             | PbI2** | PbHgI <sub>4</sub> powder |                      |     |     |                            |
|--------|------------------|-----|-------------|--------|---------------------------|----------------------|-----|-----|----------------------------|
| d, X   | 1/I <sub>1</sub> | bkl | đ, <b>X</b> | 1/1    | hkl                       | d <sub>exp</sub> , A | 1/1 | bkl | d <sub>theoretical</sub> , |
|        |                  |     | 6.98        | 25     | 001                       | 6.964                | 100 | -   | -                          |
|        | <u></u>          |     | -           | -      |                           | 6.553                | 10  | 002 | 6.552                      |
| 6.22   | 55               | 002 | -           | ana    | -                         | 6.188                | 30  | -   |                            |
|        |                  |     | -           | -      | -                         | -                    | -   | 111 | 4.558                      |
|        |                  |     | -           |        | -                         | 4.2913               | 10  | 003 | 4.370                      |
| 4.12   | 70               | 101 | -           | ***    |                           | 4.1106               | 9   | -   | -                          |
|        |                  |     | 3.9456      | 16     | 100                       | 4.022                | 8   | 112 | 3.905                      |
| 3.58   | 100              | 102 | -           | -      | -                         | 3.5728               | 13  | -   | -                          |
|        |                  |     | 3.489       | 4      | 002                       | 3.4767               | 10  | -   | -                          |
|        |                  |     | 3.435       | 100    | 101                       | 3.4340               | 7   |     | -                          |
|        |                  | ·•  | -           | **     |                           | 3.3330               | 15  | 201 | 3.325                      |
|        |                  |     | -           | -      | -                         | 3.2804               | 13  | 004 | 3.278                      |
| 3.01   | 40               | 103 |             | -      | -                         | 2.994                | 9   | -   | -                          |
| 2.768  | 30               | 112 | -           | -      | -                         | 2.7658               | 14  | -   | -                          |
|        | <u></u>          |     |             | •      | -                         | 2.6992               | 10  | 203 | 2.703                      |
| ······ |                  |     | -           | -      |                           | 2.6345               | 8   | 005 | 2.622                      |
|        |                  |     | 2.614       | 55     | 102                       | 2.6062               | 10  | -   |                            |
|        |                  |     | -           | *      | -                         | 2.4012               | 7   | 221 | 2.390                      |
|        |                  |     | 2.327       | 6      | 003                       | 2.3251               | 17  | -   | -                          |
|        |                  |     | 2.278       | 65     | 110                       | -                    | -   | -   | -                          |
| 2.192  | 60               | 114 | -           | -      | -                         | -                    | -   | -   | -                          |
| 2.186  | , 55             | 200 | -           | -      | -                         | 2.1821               | 9   | -   | -                          |
| 2.163  | 15               | 105 | 2.166       | 14     | 111                       | 2.1580               | 7   | ~   | -                          |
|        |                  |     | -           | -      | -                         | 2.1415               | 9   | 311 | 2.145                      |
| 2.074  | 15               | 006 | -           | -      | -                         | 2.0705               | 12  | -   | -                          |
| 1.874  | 15               | 6   | 2.0052      | 16     | 103                       |                      |     | -   | -                          |
| 1.865  | 15               | 212 | 1.7496      | 6      | 004                       | 1.7433               | 15  | -   |                            |
| 1.654  | 3                | 214 | - ,         | *      |                           | 1.6856               | 7   | i   | -                          |

|             | HgI2* |        |                      | Tl <sub>2</sub> HgI <sub>4</sub> | - powder ** |                            |
|-------------|-------|--------|----------------------|----------------------------------|-------------|----------------------------|
| d, A        | И1    | hki    | d <sub>exp</sub> , A | I/I <sub>1</sub>                 | hkl         | d <sub>theoreticab</sub> A |
| <del></del> |       | ······ | 6.5823               | 19                               | 002         | 6.5700                     |
| 6.22        | 55    | 002    | 6.2056               | 133                              | -           | -                          |
| -           | -     | -      | 4.6091               | 15                               | 102         | 4.6027                     |
| -           | -     | *      | 4.1990               | 15                               | 111         | 4.3087                     |
| 4.12        | 70    | 101    | 4.1068               | 28                               | *           | -                          |
| 3.58        | 100   | 102    | 3.5643               | 41                               | 103         | 3.6235                     |
| *           | -     | -      | 3.3309               | 20                               | 004         | 3.2850                     |
| 3,11        | 3     | 004    | 3.1120               | 100                              | 201         | 3.1320                     |
| 3.09        | 2     | 110    | -                    | -                                | -           | -                          |
| 3,010       | 40    | 103    | 3.0114               | 26                               | •           | -                          |
| -           | -     | -      | 2.9838               | 61                               | 104         | 2.9300                     |
| -           | •     | -      | 2.9227               | 15                               | 202         | 2,9000                     |
| 2,768       | 30    | 112    | 2.7625               | 19                               | 211         | 2.9174                     |
| 2.634       | -     | -      | 2.6110               | 13                               | 203         | 2.5970                     |
|             | 7     | 104    | 2.5100               | 13                               | -           | -                          |
| -           | +     | -      | 2.4870               | 13                               | 105         | 2.4370                     |
| -           | -     | -      | 2.3563               | 19                               | 213         | 2.4090                     |
| -           | -     | -      | 2,3120               | 22                               | 204         | 2.3013                     |
| *           | -     | -      | 2.2727               | 17                               | 115         | 2.2770                     |
| ~           | •     | -      | 2.2222               | 17                               | 221         | 2.2468                     |
| 2.192       | 60    | 114    | 2.1912               | 24                               | 006         | 2.1900                     |
| 2.186       | 55    | 200    | -                    | -                                | -           | -                          |
| 2.163       | 15    | 105    | 2.1591               | 17                               | 300;222     | 2.1218                     |
| -           | -     | -      | 2.1100               | 17                               | 301         | 2.1218                     |
| 2.074       | 15    | 006    | 2.0750               | 39                               | 106         | 2.0737                     |
| -           | -     | -      | 1.9993               | 13                               | 311         | 2.0155                     |
| -           | -     | -      | 1.9233               | 13                               | 303         | 1.9300                     |

Table 6. X-Ray diffraction spectrum on Tl<sub>2</sub>HgI<sub>4</sub> powder

.,

7.

Rosu,

. . .

| HgI2* |     |                      | CdHgI4 |     |                 |
|-------|-----|----------------------|--------|-----|-----------------|
| Иı    | hkl | d <sub>exp</sub> , A | И      | hkl | d theoretical A |
| 55    | 002 | 6.2317               | 83     | 002 | 6.220           |
| 70    | 101 | 4.1106               | 76     | 101 | 4.122           |
| 100   | 102 | 3.5756               | 100    | 102 | 3.575           |
| 3     | 004 | 3.1120               | 21     | 004 | 3.110           |
| 2     | 110 | -                    | ~      | -   | -               |
| 40    | 103 | 3.0014               | 48     | 103 | 3.008           |
| 30    | 112 | 2.7625               | 41     | 112 | 2.767           |
| 7     | 104 | 2.5265               | 24     | 104 | 2.534           |
| 60    | 114 | 2.1902               | 55     | 114 | 2.192           |
| 55    | 200 | 2.1871               | 59     | 200 | 2.185           |
| 15    | 105 | 2.1581               | 28     | 105 | 2.162           |
| 15    | 006 | 2.0695               | 31     | 006 | 2.070           |
| 7     | 202 | -                    | •      | 002 | 2.0612          |
| 9     | 211 | 1.9285               | 28     | 211 | 1.930           |
| 15    | 106 | 1.8732               | 31     | 106 | 1.873           |
| 15    | 212 | 1.8609               | 31     | 212 | 1.874           |

X - Ray diffraction spectrum on CdHgl4 powder Table 7.

\* J.C.P.D.S. 21-1157

\*\* This paper

d, A

6.220 4.120 3.580

3.110 3.090 3,010 2.768 2.534 2.192 2.186 2.163 2.074 2.062

1.931

1.874

1.865

X-Ray Studies of  $\operatorname{HgI}_4$  Complexes of Tl, Pb, Cd and Au

30

|       | HgI <sub>2</sub> * |     |                      | Au <sub>2</sub> HgI <sub>4</sub> | - powder** |                 |
|-------|--------------------|-----|----------------------|----------------------------------|------------|-----------------|
| d, A  | Иı                 | hkl | d <sub>exp</sub> , A | ហរ                               | hkl        | d theoretical A |
| 6.220 | 55                 | 002 | 6.5620               | 74                               | 002        | 6.5622          |
| 4.120 | 70                 | 101 | 4.0865               | 67                               | 101        | 4.0987          |
| 3.580 | 100                | 102 | 3.5443               | 12                               | 102        | 3.6035          |
| 3.110 | 3                  | 004 | 3.1019               | 39                               | 004        | 3.1315          |
| 3.090 | 2                  | 110 | -                    | -                                | -          | *               |
| 3.010 | 40                 | 103 | 3.0001               | 32                               | 103        | 3.0080          |
| 2,768 | 30                 | 112 | 2.7425               | 100                              | 112        | 2.7430          |
| 2.534 | 7                  | 104 | 2.5011               | 15                               | 104        | 2.5240          |
| 2.192 | 60                 | 114 | 2.1712               | 46                               | 114        | 2.1725          |
| 2.186 | 55                 | 200 | 2.1670               | 50                               | 200        | 2.1682          |
| 2.163 | 15                 | 105 | 2.1592               | 19                               | 105        | 2.1588          |
| 2.074 | 15                 | 006 | 2.0650               | 22                               | 006        | 2.0683          |
| 2.062 | 6                  | 202 | -                    | *                                | 202        | 2.0568          |
| 1.931 | 9                  | 211 | -                    | •                                | 211        | 1.9460          |
| 1.874 | 15                 | 106 | 1.8232               | 22                               | 211        | 1.8252          |
| 1.865 | 15                 | 212 | 1.8110               | 22                               | 211        | 1.8110          |

X - Ray diffraction spectrum on Au<sub>2</sub>HgI<sub>4</sub> powder Table 8.

\* J.C.P.D.S. 21-1157 \*\* This paper

нэ •

| Compound                         | r <sub>M</sub> n+, A | Lattice pa | Reference           |    |
|----------------------------------|----------------------|------------|---------------------|----|
|                                  |                      | a, A       | <b>c</b> , <b>A</b> |    |
| Ag2Hgl4                          | 1.26                 | 6.353      | 6,340               | 15 |
|                                  |                      | 12.62      | 12.62               | 16 |
|                                  |                      | 6.31       | 12.63               | 17 |
|                                  |                      | 6.322      | 12.605              | 18 |
|                                  |                      | 6.33       | 12.66               | 19 |
|                                  |                      | 6.3105     | 12.5336             | 林中 |
| Cu <sub>2</sub> HgI4             | 0.96                 | 6.09       | 12.23               | 17 |
|                                  |                      | 6.0814     | 12.1683             | ** |
| Tl <sub>2</sub> Hgl4             | 1.40                 | 6.450      | 13.140              | 绊車 |
| PbHgl4                           | 1.20                 | 6.875      | 13.110              | 珍束 |
| CdHgI4                           | 0.97                 | 4,3693     | 12.439 <del>9</del> | ** |
| Au <sub>2</sub> HgI <sub>4</sub> | 1.37                 | 6.4010     | 13.1250             | ** |

Table 9. The parameters of the "a" and "c" crystalline lattice (A), expressed for the M<sub>x</sub>HgI<sub>4</sub> studied compounds

X-Ray Studies of  $HgI_4$  Complexes of Tl, Pb, Cd and Au

. تومع

· ...

## SOUTH. BRAZ. J. CHEM., Vol. 5, Nº 5, 1997

T. Rosu, L. Paruta, M. Calinescu & A. Emandi

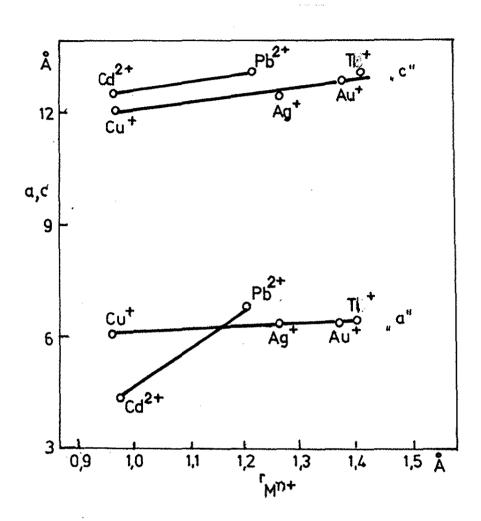



Fig.1. Relationships between the ionic rays and the tetragonal elementary cells parameters, within the M<sub>x</sub>Hgl<sub>4</sub> system

X-Ray Studies of  $HgI_A$  Complexes of Tl, Pb, Cd and Au

It is also observed that the elementary cell parameter increases with the increasing of the metallic radius ion, without the alteration of the crystallisation system.

For the  $M_2HgI_4$  compounds, the increasing of the reticulate parameter with the metallic radius ion (M<sup>+</sup>) is more emphasised on the "c" direction than on the "a" direction and for the MHgI<sub>4</sub> compounds, with metallic bivalent ions (M<sup>2+</sup>), the increasing is more emphasised on the "a" direction than on the "c" direction. These relationships are presented in figure 1.

This fact would prove that, at least for the presented cases, the ellipsoidal deformation of the metallic ion is possible in the presence of the  $HgI_d^{2-}$  anion field.

Considering the monovalent ions cases, the ellipsoidal has the large axis on the "a" direction and in the bivalent ions cases, the ellipsoidal has the large axis on the "c" direction. The spherical symmetry of the  $M^{n+}$  ions gets an ellipsoidal shape under the influence of the crystalline field. The  $d_z^2$  orbital is extended either on the "c" or on the "a" direction, same way with the increasing of the cellular unit parameter in "c" or "a" direction<sup>4</sup>.

### CONCLUSIONS

The inorganic CdHgI<sub>4</sub> and Au<sub>2</sub>HgI<sub>4</sub> combinations were synthesized.

The reticulate parameters and the crystalline systems of the  $Tl_2HgI_4$ ,  $PbHgI_4$ ,  $CdHgI_4$  and  $Au_2HgI_4$  not known until now, were determined.

### REFERENCES

1. J. Barlot and J.C. Penet, Acad. Sa., 173, 232, (1921).

2. Z. Halmos and W.W. Wendlandt, Thermochimica Acta, 7, 113, (1973).

3. G.C. Joy, Ph. D. Thesis, Northweston University, Illinois, USA, (1975).

4. R.L. Ammlung, R.P. Scaringe, J.A. Ibers, D.F. Shriver and D.H. Whitmore, J. Chem. Solid State Chem., 29, 401, (1979).

5. D.M. Adams and P.D. Hatton, Raman Spectroscopy, 14, (3), 154, (1983).

6. D. Negoiu, T. Rosu and D. Todor, Rev. Chimie (Bucuresti), 33, (8), 723, (1987).

7. R. Weil and A.W. Lawson, J. Chem. Phys., 41, 832, (1964).

8. S. Miyake, S. Hoshino and T. Takenaka, J. Phys. Soc. Japan, 7, 19, (1952).

9. T. J. Neubert and G.M. Nichols, J. Am. Chem. Soc., 80, 2619, (1958).

10. C.E. Olson and P.M. Harris, Air Force Report AFOSR T.N.-59-756.

11. A.A. El-Awady, R.B. Miller and M. Carter, J. Analyt. Chem., 48, 110, (1976).

12. C. Luca, F. Danet and C. Radu, Rev. Chimie (Bucuresti), 36, 856, (1958).

13. J. Fries and H. Ceirost, Organic Reagents For Trace Analysis, 78, (1977).

- 14. J. Fries and H. Cetrost, Organic Reagents For Trace Analysis, 175, (1977).
- 15. J.A.A. Ketelaar, Krist, 80, 190, (1931).

16. L.K. Frevel and P.P. North, J. Appl. Phys., 21, 1038, (1950).

17. H. Hahn, G. Frank and W. Klinger, J. Anorg. Chem., 279, 27, (1955).

18. K. W. Browall and J. S. Kasper, J. Solid State, 10, 20, (1974).

19. J.W. Brightwell, C.N. Buckley, R.C. Hollyoak and B.J. Ray, *Materials Science Letters*, 3, 443, (1984).

The SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY (ISSN: 2674-6891; 0104-5431) is an open-access journal since 1993. Journal DOI: 10.48141/SBJCHEM. http://www.sbjchem.com.

This text was introduced in this file in 2021 for compliance reasons. © The Author(s)

OPEN ACCESS. This article is licensed under a Creative Commons Attribution 4.0 (CC BY 4.0) International License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author (s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third-party material in this article are included in the article's Creative Commons license unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative commons license unless indicated by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.