SOUTHERN BRAZILIAN, JOURNAL OF CHEMISTRY SOUTH. BRAZ. J. CHEM., Vol. 19, No. 19, 2011

17

ANTITUBERCULAR ACTIVITY OF SOME NEWER 6-PYRIDAZINONE DERIVATIVES

Asif Husain^a*, Aftab Ahmad^b, Anil Bhandari^b and Veerma Ram^b

^aDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, New Delhi-110062, India, Email: *drasifhusain@yahoo.com, ahusain@jamiahamdard.ac.in* ^bFaculty of Pharmaceutical Sciences,

Jodhpur National University, Jodhpur, Rajasthan-342001, India

ABSTRACT

Two series of 6-pyridazinone derivatives (17-30) were synthesized and evaluated for antitubercular activities against Mycobacterium tuberculosis $H_{37}Rv$ strain. The results indicated that among the synthesized compounds, 5-(4-hydroxy-3-methoxybenzyl)-3-phenyl-1,6-dihydro-6-pyridazinone (23) showed good antitubercular activity. Three more compounds, (18, 25 & 27) were significant in their antitubercular action. The present study reveals the antitubercular potential of 6-pyridazinones.

KEY WORDS: Pyridazinone, antitubercular, mycobacteria, furanone.

RESUMO

Duas séries de derivados de 6-piridazona foram sintetizados e avaliados para a atividade antitubercular contra Mycobacterium tuberculosis da cepa $H_{37}Rv$. Os resultados experimentais indicaram que o composto 5-(4-hidroxi-3-metoxibenzil)-3-fenil-1,6-dihidro-6-piridazinona (23) apresentou boa atividade antitubercular. Outros três compostos (18, 25 e 27) mostraram atividade antitubercular significativa. O presente estudo revela o potencial antitubercular de 6-piridazinonas.

PALAVRAS-CHAVE: Piridazinona, atividade contra tuberculose, micobactéria, furanona.

VISIT OUR SITE: http://www.sbjchem.he.com.br

Antitubercular Activity of Some Newer 6-Pyridazinone Derivatives

INTRODUCTION

Resistance of *Mycobacterium tuberculosis* strains to available antitubercular drugs is an increasing problem worldwide. New potent antimycobacterial drugs with new mechanisms of action have not been developed in the last forty years¹. TB is considered by the WHO to be the most important chronic communicable disease in the world. About 32% of the world's population is currently infected with TB. The emergence of AIDS, decline of socioeconomic standards and a reduced emphasis on tuberculosis control programs contribute to the disease's resurgence in industrialized countries². If the present trend continues, tuberculosis is likely to claim more than 30 million lives within the new decade. A great deal of research is being directed towards the development of new antitubercular drug.

During recent years pyridazinones have been a subject of intensive research due to their wide spectrum of biological activities. Substituted pyridazinones have been found to have potent antibacterial, antifungal and antiviral including anti-HIV activities³⁻⁶. Various 3-(2H)-pyridazinone derivatives have shown anticancer⁶, analgesic & anti-inflammatory⁶⁻⁸, anticonvulsant⁹, cardiotonic & hypotensive^{10,11} and antiulcer activities¹². Now research efforts are toward the search of new antimycobacterial agents (new classes of compounds), which are structurally different from known antimycobacterial drugs^{13,14}. The present work describes the synthesis of newer 2(3H)-pyridazinones with encouraging antitubercular activity.

MATERIALS AND METHODS

Synthesis

Melting points were determined in open capillary tubes and are uncorrected. Thin-layer chromatography was carried out to monitor the reactions using silica gel G plates. The IR spectra were recorded in potassium bromide pellets using a Perkin-Elmer 1725X spectrophotometer. Elemental analyses were performed on a Perkin-Elmer 240 analyzer and the values were in range of $\pm 0.4\%$ theoretical value for the element analyzed (C, H, N). ¹H-NMR spectra were recorded on Bruker spectropsin DPX-300 MHz in CDCl₃; chemical shift (δ) values are reported in parts per million (*ppm*). The splitting pattern abbreviations are as follows: *s*, singlet; *d*, doublet; *m*, multiplet. Mass spectra under electron impact conditions (EI) were recorded at 70 eV ionizing voltage with a VG Prospec instrument and are presented as m/z. Spectral data are consistent with the assigned structures.

Preparation of 3-(4-Chloro/methyl benozyl)propionic acid (1,2). The compounds, 1 and 2, were synthesized according to the reported method¹⁴.

Preparation of 3-Arylidene-5-(4-chloro/methyl phenyl)-2(3H)-furanones (3-16). Compounds (3-16) were synthesized from 3-(4-chloro/methyl benozyl)propionic acid (1,2) following literature method¹⁴.

General Procedure for the synthesis of 5-(substituted benzyl)-3-aryl-1,6-dihydro-6-pyridazinones (17-30). 2(3H)-Furanones (3-16) (0.005 mole) and hydrazine hydrate (1-2 mL) in *n*-propanol (5-6 mL) were refluxed for 3h. After refluxing reaction mixture was poured onto crushed ice, a precipitate was obtained, which was filtered, dried and recrystallized from methanol to give TLC pure 5-(substituted benzyl)-3-aryl-1,6-dihydro-6-pyridazinone derivatives (17-30).

A. Husain, A. Ahmad, A. Bhandari and V. Ram

5-Benzyl-3-phenyl-1,6-dihydro-6-pyridazinone (17): Yield: 58%; m.p. 168-170 °C; ¹H-NMR (CDCl₃, δ , ppm): 3.99 (s, 2H, CH₂), 7.26 (s, 1H, H-4, pyridazinone ring), 7.29-7.41 (m, 6H, 2xH-2,4,6, benzyl + phenyl), 7.58-7.65 (m, 4H, 2xH-3,5, benzyl + phenyl), 10.62 (s, 1H, NH); MS (*m*/*z*): 262(M⁺); IR (cm⁻¹, KBr): 3186 (NH), 2949 (CH), 1683 (CO); Anal calcd. for C₁₇H₁₄N₂O (CHN).

5-(2-Chlorobenzyl)-3-phenyl-1,6-dihydro-6-pyridazinone (18): Yield: 63%; m.p. 210 °C; ¹H-NMR (CDCl₃, δ , ppm): 4.42 (s, 2H, CH₂), 7.24 (s, 1H, H-4, pyridazinone ring), 7.26-7.64 (m, 9H, phenyl+ benzyl) 10.77 (s, 1H, NH); MS (*m*/*z*): 296/297 (M⁺/M+1); IR (cm⁻¹, KBr): 3179 (NH), 2942 (CH), 1688 (CO), 726 (C-Cl); Anal calcd. for C₁₇H₁₃ClN₂O (CHN).

5-(4-Chlorobenzyl)-3-phenyl-1,6-dihydro-6-pyridazinone (19): Yield: 68%; m.p. 188 °C; ¹H-NMR (CDCl₃, δ , ppm): 3.93 (s, 2H, CH₂), 7.24 (s, 1H, H-4, pyridazinone ring), 7.27 & 7.67 (d, each, 2xA₂B₂, p-chlorophenyl), 7.30 (m, 1H, H-4, phenyl), 7.33 (m, 2H, H-2,6, phenyl), 7.46 (m, 2H, H-3,5, phenyl), 12.68 (s, 1H, NH); MS (*m*/*z*): 296/297(M⁺/M+1); IR (cm⁻¹, KBr): 3173 (NH), 2936 (CH), 1672 (CO), 707 (C-Cl); Anal calcd. for C₁₇H₁₃ClN₂O (CHN).

5-(3-Nitrobenzyl)-3-phenyl-1,6-dihydro-6-pyridazinone (20): Yield: 58%, m.p. 178-180 °C; ¹H-NMR (CDCl₃, δ , ppm): 3.89 (s, 2H, CH₂), 7.14 (s, 1H, H-4, pyridazinone ring), 7.26 (m, 1H, H-4, phenyl), 7.31 (m, 1H, H-4, phenyl), 7.44 (m, 1H, H-6, benzyl ring), 7.34 (m, 2H, H-2,6, phenyl), 7.50 (m, 2H, H-3,5, phenyl), 8.14 (m, 1H, H-5, benzyl ring), 8.16 (m, 1H, H-4, benzyl ring), 8.18 (m, 1H, H-2, benzyl ring), 10.98 (s, 1H, NH); MS (*m*/*z*): 307 (M⁺); IR (cm⁻¹, KBr): 3178 (NH), 2942 (CH), 1686 (CO); Anal calcd. for C₁₇H₁₃N₃O₃ (CHN).

5-(4-Methoxybenzyl)-3-phenyl-1,6-dihydro-6-pyridazinone (**21**): Yield: 52%; m.p. 186 °C; ¹H-NMR (CDCl₃, δ , ppm): 3.82 (s, 3H, OCH₃), 3.93 (s, 2H, CH₂), 6.82 (s, 1H, H-4, pyridazinone ring), 6.83 & 7.41 (d, each, 2xA₂B₂, p-methoxy benzyl ring), 7.21 (m, 1H, H-4, phenyl ring), 7.27 (m, 2H, H-2,6, phenyl ring), 7.65 (m, 2H, H-3,5, phenyl ring), 10.87 (s, 1H, NH); MS (*m*/z): 292 (M⁺); IR (cm⁻¹, KBr): 3173 (NH), 2936 (CH), 1684 (CO); Anal calcd. for C₁₈H₁₆N₂O₂ (CHN).

5-(3,4-Dimethoxybenzyl)-3-phenyl-1,6-dihydro-6-pyridazinone (22): Yield: 56%; m.p. 198-200 °C; ¹H-NMR (CDCl₃, δ , ppm): 3.63 (s, 2H, 2xOCH₃), 3.86 (s, 2H, CH₂), 7.26 (s, 1H, H-4, pyridazinone ring), 7.28 (m, 1H, H-4, phenyl ring), 7.38 (m, 1H, H-6, benzyl), 7.61 (m, 2H, H-3,5, phenyl ring), 7.64 (m, 1H, H-5, benzyl), 7.66 (m, 1H, H-2, benzyl), 11.31 (s, 1H, NH); MS (*m*/*z*): 322 (M⁺); IR (cm⁻¹, KBr): 3167 (NH), 3002 (CH), 1673 (CO); Anal calcd. for C₁₉H₁₈N₂O₃ (CHN).

5-(4-Hydroxy-3-methoxybenzyl)-3-phenyl-1,6-dihydro-6-pyridazinone (23): Yield: 62%; m.p. 191-193 °C; ¹H-NMR (CDCl₃, δ , ppm): 3.48 (s, 2H, CH₂), 3.64 (s, 3H, OCH₃), 6.53 (s, 1H, H-4, pyridazinone ring), 7.07-7.29 (m, 5H, phenyl), 7.39-7.72 (3H, H-2,5,6, benzyl), 10.82 (s, 1H, NH); MS (*m*/*z*): 308 (M⁺); IR (cm⁻¹, KBr): 3185 (NH), 2955 (CH), 1686 (CO); Anal calcd. for C₁₈H₁₆N₂O₃ (CHN).

5-(4-Fluorobenzyl)-3-phenyl-1,6-dihydro-6-pyridazinone (24): Yield: 57%; m.p. 201 °C; ¹H-NMR (CDCl₃, δ , ppm): 3.57 (s, 2H, CH₂), 7.09 (s, 1H, H-4, pyridazinone ring), 7.28 (m, 1H, H-4, phenyl), 7.29 (d, H-2,6, p-fluorobenzyl), 7.37 (m, 2H, H-2,6, phenyl), 7.53 (m, 2H, H-3,5, p-fluorobenzyl), 7.57 (m, 2H, H-3,5, phenyl), 11.73 (s, 1H, NH); MS (*m*/*z*): 280 (M⁺); IR (cm⁻¹, KBr): 3182 (NH), 2949 (CH), 1673 (CO); Anal calcd. for C₁₇H₁₃FN₂O: (CHN).

5-(4-Hydroxy-3-ethoxybenzyl)-3-phenyl-1,6-dihydro-6-pyridazinone (25): Yield: 65%; m.p. 180 °C; ¹H-NMR (CDCl₃, δ , ppm): 1.46 (t, 3H, OCH₂CH₃), 3.48 (s, 2H, CH₂), 4.07 (m, 2H, O<u>CH₂CH₃</u>), 6.53 (s, 1H, H-4, pyridazinone ring), 7.07-7.29 (m, 5H, phenyl), 7.39-7.72 (3H, H-2,5,6, benzyl), 10.82 (s, 1H, NH); MS (*m*/*z*): 322 (M⁺); IR (cm⁻¹, KBr): 3184 (NH), 2966 (CH), 1678 (CO); Anal calcd. for C₁₉H₁₈N₂O₃ (CHN).

19

Antitubercular Activity of Some Newer 6-Pyridazinone Derivatives

5-(2-Chlorobenzyl-3-(4-chlorophenyl)-1,6-dihydro-6-pyridazinone (26): Yield: 63%; m.p. 186-188 °C; ¹H-NMR (CDCl₂, δ, ppm): 3.93 (s, 2H, CH₂), 7.21 (s, 1H, H-4, pyridazinone ring), 7.28 (m, 2H, H-4,6, phenyl), 7.38 (m, 1H, H-5, phenyl ring),7.40 & 7.59 (d, each, 2xA₂B₂, pchlorophenyl ring), 7.44 (m, 1H, H-3, phenyl), 11.52 (s, 1H, NH); MS (m/z): 330/331/333 (M⁺/M+1/M+3); IR (cm⁻¹, KBr): 3185 (NH), 2952 (CH), 1676 (CO), 714 (C-Cl); Anal calcd. for C₁₇H₁₂Cl₂N₂O (CHN).

5-(2-Hydroxybenzyl)-3-(4-chlorophenyl)-1,6-dihydro-6-pyridazinone (27): Yield: 58%; m.p. 182-184 °C: ¹H-NMR (CDCl₃, δ, ppm): 3.61 (s, 2H, CH₂), 7.26 (s, 1H, H-4, pyridazinone ring), 7.34 (m. 1H, H-4, phenyl ring), 7.41 & 7.62 (d, each, 2xA₂B₂, p-chlorophenyl), 7.64 (m, 2H, H-2,5, phenyl), 8.37 (m, 1H, H-3, phenyl), 8.57 (s, 1H, OH), 9.33 (s, 1H, NH); MS (m/z): 312/313 (M⁺/M+1); IR (cm⁻¹, KBr): 3174 (NH), 2939 (CH), 1683 (CO), 718 (C-Cl); Anal calcd. for C17H13CIN2O2 (CHN).

5-(3-Hydroxybenzyl)-3-(4-chlorophenyl)-1,6-dihydro-6-pyridazinone (28): Yield: 54%; m.p. 189 °C; ¹H-NMR (CDCl₃, δ, ppm): 3.64 (s, 2H, CH₂), 7.19 (s, 1H, H-4, pyridazinone ring). 7.42 & 7.55 (d, each, 2xA₂B₂, *p*-chlorophenyl), 7.57 (m, 1H, H-6, benzyl), 7.98 (m, 1H, H-5, benzyl), 8.07 (m, 1H, H-4, benzyl), 8.17 (m, 1H, H-2, benzyl), 9.35 (s, 1H, NH); MS (m/z): 312/313 (M⁺/M+1); IR (cm⁻¹, KBr): 3168 (NH), 2944 (CH), 1681 (CO), 722 (C-Cl); Anal calcd. for C17H13CIN2O2: (CHN).

5-(3-Nitrobenzyl)-3-(4-chlorophenyl)-1,6-dihydro-6-pyridazinone (29): Yield: 56%; m.p. 198 °C; ¹H-NMR (CDCl₃, δ, ppm): 4.05 (s, 2H, CH₂), 7.15 (s, 1H, H-4, pyridazinone ring), 7.24 & 7.53 (d, each, 2xA₂B₂, p-chlorophenyl), 7.55 (m, 1H, H-6, benzyl), 8.21 (m, 1H, H-5, benzyl), 8.31 (m, 1H, H-4, benzyl), 8.49 (m, 1H, H-2, benzyl), 9.23 (s, 1H, NH); MS (m/z): 341/342 (M⁺/M+1); IR (cm⁻¹, KBr): 3180 (NH), 2934 (CH), 1687 (CO), 717 (C-Cl); Anal calcd. for C17H12CIN3O3 (CHN).

5-(3,4-Dimethoxybenzyl)-3-(4-chlorophenyl)-1,6-dihydro-6-pyridazinone (30): Yield: 59%; m.p. 186-188 °C; ¹H-NMR (CDCl₃, δ, ppm): 3.87 (s, 6H, 2x-OCH₃), 3.71 (s, 2H, CH₂), 6.81 (s, 1H, H-4, pyridazinone ring), 6.83 (m, 2H, H-2,6, benzyl), 7.26 (m, 1H, H-5, benzyl), 7.39 & 7.61 (d, each. $2xA_2B_2$, *p*-chlorophenyl), 11.54 (s, 1H, NH); MS (*m/z*): 356/357 (M⁺/M+1); IR (cm⁻¹, KBr): 3176 (NH), 2959 (CH), 1681 (CO), 725 (C-Cl); Anal calcd. for C19H17ClN2O3 (CHN). Antitubercular activity^{15,16}

The antitubercular screening was carried out against Mycobacterium tuberculosis H₃₇Rv (ATCC 27294) in Middle brook 7H11 agar medium with OADC (oleic acid albumin dextrose catalase) growth supplement. 10 fold serial dilutions of each test compound/drug (in DMSO/Water mixture) were incorporated into the agar medium. Inoculum of M. tuberculosis H₃₇Rv were prepared from fresh Middlebrook 7H11 agar slants with OADC growth supplement adjusted to 1 mg/mL (wet weight) in Tween 80 (0.05%) saline diluted to 10⁻² to give a concentration of approximately 10⁷ cfu/mL. A 5 µL amount of bacterial suspension was spotted into 7H11 agar tubes containing 10-fold serial dilutions of drugs per mL. The tubes were incubated at 37 °C, and final readings were recorded after 30 days. The minimum inhibitory concentration (MIC) is defined as the minimum concentration of compound required to give complete inhibition of bacterial growth. The MIC of the standard drug streptomycin was 10 µg/mL. The results are presented in Table 1.

RESULTS AND DISCUSSION

Synthesis

The starting material, 3-(4-chlorobenzoyl/benzoyl)propionic acid (1,2) was synthesized from dry benzene or chlorobenzene following Friedal Craft's acylation reaction conditions¹⁴. 2(3H)-Furanones (3-16) were prepared using 3-aroylopionic acid (1,2) following the previously A. Husain, A. Ahmad, A. Bhandari and V. Ram

0 OH 0 0 R R Ö 3-Aroylpropionic acid (1,2) Substituted benzene Succinic anhydride R` R` 0 NH2NH2.H2O R 0 N N Н Furanones (3-16) Pyridazinones (17-30)

Scheme 1: Protocol for synthesis of title compounds

Table 1: Antitubercular activity of the 6-pyridazinone derivatives 17-30.

Compound	R	R`	MIC values
17	Н	Н	50
18	Н	2-C1	25
19	Н	4-C1	50
20	Н	3- NO ₂	50
21	Н	4-OCH ₃	50
22	Н	3,4-(OCH ₃) ₂	50
23	Н	4-OH; 3-OCH ₃	12.5
24	Н	4-F	50
25	Н	4-OH; 3-OC ₂ H ₅	25
26	4-C1	2-Cl	50
27	4-C1	2-OH	25
28	4-C1	3-OH	50
29	4-C1	3- NO ₂	50
30	<u>4-Cl</u>	3,4-(OCH ₃) ₂	50

Antitubercular Activity of Some Newer 6-Pyridazinone Derivatives

benzyl)-3-aryl-1,6-dihydro-6-pyridazinone derivatives (17-30) (Scheme-1). Spectral data and microanalysis data were in agreement with the proposed structures.

Antitubercular activity

The antitubercular screening was carried out against *Mycobacterium tuberculosis* H₃₇Rv (ATCC 27294) (**Table 1**). The results indicated that 5-(4-hydroxy-3-methoxybenzyl)-3-phenyl-1,6-dihydro-6-pyridazinone (**23**) showed best antitubercular activity among the synthesized compounds with *MIC*-12.5 μ g/mL. Three compounds, 5-(2-chlorobenzyl)-3-phenyl-1,6-dihydro-6-pyridazinone (**18**), 5-(4-hydroxy-3-ethoxybenzyl)-3-phenyl-1,6-dihydro-6-pyridazinone (**25**) and 5-(2-hydroxybenzyl)-3-(4-chlorophenyl)-1,6-dihydro-6-pyridazinone (**27**) were also significant in their antitubercular action with *MIC*-25 μ g/mL. Rests of the compounds showed *MIC*-values of 50 μ g/mL. Disubstituted phenyl rings having hydroxyl group (**23** & **25**) at 5th position of pyridazinone ring showed good antitubercular activity than unsubstituted or monosubstituted phenyl rings. Among the mono-substituted phenyl rings at 5th position of pyridazinone ring, presence of 2-chloro or 2-hydroxyl group (**18** & **27**) showed significant antitubercular activity.

Conclusions

To sum up, among the synthesized 14 newer pyridazinones, compound 23, 5-(4-hydroxy-3-methoxybenzyl)-3-phenyl-1,6-dihydro-6-pyridazinone emerged as lead compound with good antitubercular activity. The study showed the antitubercular potential of 6-pyridazinone derivatives.

Acknowledgements: The authors are thankful to UGC for financial assistance under majorresearch project scheme. We are also thankful to Prof. MSY Khan, Professor Emeritus, Jamia Hamdard, New Delhi for his valuable suggestions.

REFERENCES

- 1. Bloom, B. R.; Murray, C. J. L. Science 1992, 257, 1055.
- 2. Barnes, P. F.; Blotch, A. B.; Davidson, P. T.; Snider, D. E. N. Engl. J. Med. 1991, 324, 1644.
- 3. Sonmez, M.; Berber, I.; Akbas, E. Eur. J. Med. Chem. 2006, 41, 101.
- 4. Abubshait, S.A. Molecules 2007, 12, 25.
- 5. Rossotti, R.; Rusconi, S. HIV Therapy 2009, 3, 63.
- 6. Ahmad, S.; Rathish, I. G.; Bano, S.; Alam, M. S.; Javed, K. J. Enzy Inh. Med. Chem. 2010, 25, 266.
- 7. Dogruer, D. S.; Sahin, M. F.; Unlu, S.; Ito, S. Arch Pharm (Weinheim) 2000, 333, 79.
- 8. Dogruer, D.; Sahin, M. F. Turk. J. Chem. 2003, 27, 727.
- 9. Sivakumar, R.; Anbalagan, N.; Gunasekaran, V.; Leonard, J.T. Biol. Pharm. Bull. 2003, 26, 1407.
- 10. Costas, T., Besada, P., Piras, A., Acevedo, L., Yanez, M., Orallo, F., Laguna, R., Teran, C. Bioorg Med Chem Lett. 2010, 20, 6624.
- 11. Okushima, A., Narimatsu, A., Kobayashi, M., Furuya, R., Tsuda, K., Kitada, Y. J. Med. Chem. 1987, 30, 1157.

A. Husain, A. Ahmad, A. Bhandari and V. Ram

- Yamada, T., Nobuhara, Y., Shimamura, H., Yoshihara, K., Yamaguchi, A., Ohki, M. 12. Chem. Pharm. Bull. 1981, 29, 3433.
- Ali, M. A.; Yar, M. S.; Siddiqui, A. A.; Husain, A.; Abdullah, M. Acta Polo. Pharm-Drug 13. Research 2007, 63, 435.
- Husain, A.; Alam, M. M.; Hasan, S. M.; Yar, M. S. Acta Polo. Pharm-Drug Research 14. 2009, 66, 173.
- 15. Elmer, W. K.; Stephen, D. A.; William, M. J.; Paul, C. S.; Washing Jr C. W. 'Text book of diagnostic Microbiology' 5th edn, Lippincot Publishers, 2002.
- Ellen, J. B.; Lancer, R. P.; Sydney, M. F. 'Bailey and Scott's Diagnostic Microbiology' 9th 16. edn, 2000.

VISIT OUR SITE: http://www.sbjchem.he.com.br

The SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY (ISSN: 2674-6891; 0104-5431) is an open-access journal since 1993. Journal DOI: 10.48141/SBJCHEM. http://www.sbjchem.com. This text was introduced in this file in 2021 for compliance reasons.

© The Author(s) OPEN ACCESS. This article is licensed under a Creative Commons Attribution 4.0 (CC BY 4.0) International License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author (s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third-party material in this article are included in the article's Creative Commons license unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.